Цирконий (металл): лечебные свойства и применение. Цирконий металл. Описание и свойства циркония

Cтраница 1


Применение циркония, так же как и титана, в последнее время сильно развивается, несмотря на сложность переработки его руд. Сплавы циркония с кобальтом и никелем обладают кислотоупорными свойствами. Цирконий является одним из лучших материалов для ядерных реакторов.  

Применение циркония для изготовления эксплуатирующихся при высоких температурах деталей (или их отдельных частей) ртутных газоразрядных приборов обеспечивает связывание следов кислорода в газовом наполнении и устраняет образование черных налетов на внутренней поверхности их оболочек, которое обусловлено окислением ртути.  

Применение циркония в металлургии обусловлено тем, что он является одним из энергичнейших раскислителей стали. Кроме того, связывая в прочные соединения азот и серу, цирконий, нейтрализует их вредное влияние на сталь. В сочетании с другими легирующими присадками цирконий повышает вязкость, прочность, износостойкость и свариваемость стали. Различают два основных типа месторождений циркония: коренные и россыпи. Важнейшее значение имеют современные и древние прибрежно-морские россыпи, которые обычно представляют собой комплексные руды циркония и титана, реже содержащие также торий, уран и другие ценные элементы. Наиболее крупные месторождения циркония находятся в США, Индии, Бразилии и Австралии. Запасы циркониевых руд в СССР обеспечивают потребность отечественной промышленности в цирконии и его сплавах. Кроме того, циркониевый концентрат может содержать торий и уран, суммарно в эквиваленте не более 0 1 % тория.  

Применению циркония в первое время препятствовали его высокая стоимость и недостаточная / коррозионная стойкость в воде и водяном паре, особенно при температурах выше 400 С.  

Известно также применение циркония для производства стали, которая содержит 0 35 % Zr, 3 % Ni и отличается повышенной прочностью и хорошей свариваемостью; благодаря этим свойствам циркониевые стали получили широкое применение в судостроении. Было, кроме того, установлено, то добавки 0 08 - 0 1 % Zr увеличивают сопротивление сжатию, ударную вязкость и пластичность конструкционных сталей, а присадки 11 - 10 % Zr - износоустойчивость быстрорежущей стали.  

Известно также применение циркония для производства стали, которая содержит 0 35 % Zr, 3 % Ni и отличается повышенной прочностью и хорошей свариваемостью; благодаря этим свойствам циркониевые стали получили широкое применение в судостроении. Было кроме того установлено, что добавки 0 08 - 0 1 % Zr увеличивают сопротивление сжатию, ударную вязкость и пластичность конструкционных сталей, а присадка 1 - 10 % Zr - износоустойчивость быстрорежущей стали.  

В области применения циркония в химическом оборудовании накоплен пока небольшой опыт, не позволяющий в полной мере оценить преимущества и недостатки этого металла. Пока нет оснований ожидать, что при использовании циркония в этой отрасли промышленности придется столкнуться с более серьезными проблемами, чем при использовании широко распространенных материалов (таких как титан или нержавеющая сталь), стойкость которых связана с формированием поверхностных защитных пленок.  

Наиболее широкой областью применения циркония в настоящее время являются атомные реакторы, где он выступает в качестве основного конструкционного материала. Это обусловлено малым поперечным сечением поглощения тепловых нейтронов циркония, сочетающимся с высокой коррозионной стойкостью, высокой пластичностью и хорошей его обрабатываемостью.  

Сделан вывод о возможности и определены условия применения циркония и титана вместо тантала для ковденсаторов узла синтеза йодистого метила.  

Как уже было сказано, главной областью применения циркония является ядерная техника.  

У фирмы нет пока заводского опыта по применению циркония, но в Амстердамской лаборатории недавно начаты работы по сварке и испытанию этого металла. Ожидается полезное использование его во многих областях химической промышленности. С конструктивной точки зрения желательно детали сваривать аргоно-дуговым способом без добавочного сложного и дорогого сварочного оборудования.  

Химическое машиностроение является также одной из главных областей применения циркония, где используется его исключительно высокая коррозионная стойкость как к минеральным и органическим кислотам, так и к концентрированным растворам щелочей.  

Необходимость разделения циркония и гафния возникла в связи с применением циркония в качестве конструкционного материала в ядерной технике. Примесь гафния, эффективное сечение захвата нейтронов у которого составляет 160 барн, делает материал непригодным в реакторо-строении.  

Таким образом, в наши дни определились совершенно новые направления в применении циркония, а гафний - этот придаток к цирконию, с присутствием которого в прежних областях применения циркония не нужно было считаться, приобрел неожиданно большое значение, с одной стороны, как яд для цир-кония-в ядерных установках, а, с другой, - как самостоятельный конструкционный материал.  

Она разрабатывалась преимущественно в научных целях, так как в любой из известных тогда областей применения циркония и его соединений постоянное присутствие примеси гафния совершенно не сказывалось. Самостоятельное же использование гафния и его соединений ничего особенно нового не сулило.  

В промышленности цирконий и гафний выпускают, как в форме металла (ковкий и порошки), сплавов, так и в форме различных их соединений, в зависимости от того, где в дальнейшем будут использовать циркониевую продукцию.

Области применения циркония, его сплавов и химических соединений достаточно разнообразны. Основные области в настоящее время:

1) атомная энергетика;
2) электроника;
3) пиротехника и производство боеприпасов;
4) машиностроение;
5) производство сталей и сплавов с цветными металлами;
6) производство огнеупоров, керамики, эмалей и стекла;
7) литейное производство.

В первых четырех областях используют металлический цирконий или сплавы на его основе.

Примерное распределение циркония по областям потребления: литейное производство – 42%, огнеупоры – 30%, керамика – 12%, металл и сплавы с цветными металлами – 12%.

Литейное производство. В этой области используют цирконовые концентраты (ZrSiO 4) для изготовления литейных форм и присыпок, с целью получения хорошей поверхности отливок.

Производство огнеупоров, фарфора, эмалей, глазурей и стекла . В этой области, используют минералы (циркон и бадделеит) и химические соединения циркония (диоксид циркония, цирконаты, диборид циркония).
Недостаток чистого диоксида циркония как огнеупорного материала - термическая неустойчивость, проявляющаяся в растрескивании нагретых до высокой температуры изделий из него при охлаждении. Это явление обусловлено полиморфными превращениями диоксида циркония. Растрескивание устраняют, добавляя стабилизаторы - оксиды магния или кальция, которые, растворяясь в диоксиде циркония, образуют твердый раствор с кубической кристаллической решеткой, сохраняющейся и при высоких и при низких температурах.
Из диоксида циркония или минералов бадделеита и циркона изготовляют огнеупорный кирпич для металлургических печей, тигли для плавки металлов и сплавов, огнеупорные трубы и другие изделия.
Циркониевые минералы или диоксид циркония добавляют в некоторые сорта фарфора, идущего на изготовление изоляторов в линиях электропередач высокого напряжения, высокочастотных установках, запальных свечах двигателей внутреннего сгорания. Циркониевый фарфор обладает высокой диэлектрической постоянной и малым коэффициентом расширения.
Диоксид циркония и циркон (очищенный от примеси железа) нашли широкое применение в качестве составной части эмалей. Они сообщают эмали белый цвет и кислотостойкость и вполне заменяют используемый для этих целей дефицитный оксид олова. Циркон и диоксид циркония вводят также в состав некоторых сортов стекла. Добавки Zr0 2 повышают устойчивость стекла против действия растворов щелочей.



Конструкционная керамика. Это наиболее перспективная область использования диоксида циркония. В Японии организована программа по конструкционной керамике: высокопрочная – для высокотемпературных двигателей; коррозионностойкая – для использования в активных высокотемпературных средах; износостойкая – при высоких температурах и больших скоростях. Керамические материалы на основе диоксида циркония используют в деталях автомобилей и автомобильных двигателей. Создан дизельный двигатель с керамическими поршнями и лопатками турбин. Он не требует водяного охлаждения, потребляет вдвое меньше топлива, а выходная мощность у него выше на 30%.

Производство сталей и сплавов с цветными металлами. Присадки циркония широко используют в производстве сталей с целью раскисления, очистки стали от азота, а также связывания серы. Цирконий, кроме того, - ценный, легирующий элемент; его вводят в некоторые сорта броневых сталей, сталей для орудийных поковок, нержавеющих и жаропрочных сталей. Для введения в стали используют ферросиликоцирконий (40- 45% Zr, 20-24% Si, остальное железо).

Цирконий входит в состав ряда сплавов на основе цветных металлов (меди, магния, свинца, никеля). Сплавы меди с цирконием, содержащие от 0,1 до 5% Zr, способны к упрочнению, которое достигается термической обработкой. Предел прочности при растяжении возрастает до 50 кг/мм 2 , что на 50% выше прочности неотожженной меди. Добавки циркония повышают температуру отжига изделий из меди (проволока, листы) до 500° С. Небольшие добавки циркония к меди, повышая ее прочность, лишь в незначительной степени снижают электропроводность. Цирконий вводят в медь в виде лигатурного сплава, содержащего 12-14% Zr, остальное медь. Из сплавов меди с цирконием изготовляют электроды точечной сварки и электропроводы в тех случаях, где требуется высокая их прочность.
Получили распространение сплавы магния, легированные цирконием. Небольшие добавки циркония способствуют получению мелкозернистых магниевых отливок, что приводит к повышению прочности металла. Высокой прочностью обладают магниевые сплавы, легированные цирконием и цинком (4-5% Zn и 0,6-0,7% Zr). Они рекомендованы как конструкционные материалы для реактивных двигателей.
Цирконий добавляют (в виде кремнециркониевого сплава) в свинцовистые бронзы. Он обеспечивает дисперсное распределение свинца и полностью предотвращает сегрегацию свинца в сплаве. Высокой прочностью и электропроводностью отличаются меднокадмиевые сплавы, содержащие до 0,35% Zr.
Цирконий входит в состав некоторых антикоррозионных сплавов. Так, сплав, состоящий из 54% Nb, 40% Та и 6-7% Zr, предложен как заменитель платины.

В последние годы разработаны сверхпроводящие сплавы, содержащие цирконий. Их используют для электромагнитов с высоким напряжением магнитного поля. Один из таких сплавов, содержащий 75% Nb и 25% Zr, при 4,2° К выдерживает нагрузку до 100 000 а/см 2 .

Атомная энергетика. В 1950 г. в связи с развитием атомной энергетики цирконий привлек к себе внимание как конструкционный материал для энергетических ядерных реакторов. Это вызвало организацию промышленного производства пластичного циркония и сплавов на его основе. Ценность циркония как конструкционного материала для атомной техники определяется тем, что цирконий имеет малое сечение захвата тепловых нейтронов (~0,18 барн), высокую антикоррозионную стойкость, хорошие механические свойства.
Для использования циркония в атомной технике потребовалось решить сложную задачу очистки циркония от его химического аналога - гафния, который обладает высоким сечением захвата нейтронов - 115 барн. Из циркония и сплавов на его основе изготовляют защитные оболочки для урановых тепловыделяющих элементов, каналы, в которых циркулирует теплопередающая жидкость, и другие детали конструкций ядерных реакторов. Жаропрочность циркония и стойкость его против действия воды и пара можно повысить добавками олова (1,4-1,6%), а также малыми присадками железа (0,1- 0,15%), хрома (0,08-0,12%), никеля (0,04-0,06%). Сплав, содержащий перечисленные выше легирующие добавки, носит название циркаллой-2.

Подобно молибдену, цирконий применяют для легирования урана с целью повышения его механической прочности и стойкости против коррозии.

Электроника. В производстве электровакуумных приборов используют свойство циркония поглощать газы, что позволяет поддерживать высокий вакуум в электронных приборах. Для этой цели порошок циркония наносят на поверхность анодов, сеток и других нагреваемых деталей электровакуумного прибора или плакируют детали циркониевой фольгой. Нанесение циркония на поверхность сетки в радиолампах способствует подавлению эмиссии сетки.

Циркониевую фольгу применяют в рентгеновских трубках с молибденовыми антикатодами. Фольга служит здесь фильтром для повышения монохроматичности излучения.

Пиротехника и производство боеприпасов. В этой области используют порошкообразный цирконий, отличающийся низкой температурой воспламенения и высокой скоростью сгорания. Порошки циркония служат воспламенителем в смесях для капсюлей-детонаторов, а также в смесях для фотовспышек. В смеси с окислителями (нитратом бария или бертолетовой солью) порошки циркония образуют бездымный порох.

Машиностроение. До последнего времени пластичный цирконий и сплавы на его основе применялись преимущественно в атомной технике. Однако с дальнейшим расширением его производства и снижением стоимости цирконий может быть эффективно использован в химическом машиностроении как кислотостойкий материал, для изготовления деталей центрифуг, насосов, конденсаторов, испарителей; в общем машиностроении (поршни, шатуны, тяги и др.); в турбостроении (лопасти турбин и другие детали).

Прочие области применения . Среди других областей следует упомянуть использование сульфатов циркония (двойного сульфата циркония с сульфатом аммония и др.) в качестве дубителя в кожевенной промышленности; применение хлорида и оксихлорида циркония для приготовления катализаторов, используемых в синтезе органических соединений.

Областей применения гафния по сравнению с цирконием значительно меньше, но и объемы его производства существенно ниже, чем циркония. Это в основном атомная энергетика, производство тугоплавких и жаропрочных материалов и сварка газовых труб большого диаметра.

Атомная энергетика. Начало промышленного производства гафния и его соединений относится к 1950-1951 гг. Интерес к его применению возник в первую очередь в атомной технике, поскольку в отличие от циркония гафний, хотя и является его химическим аналогам, имеет его высокое сечение захвата тепловых нейтронов – 115 барн. Это дает возможность использования гафния и его соединений (HfO 2 , HfB 2) в качестве материалов регулирующих стержней ядерных реакторов.

Производство тугоплавких и жаропрочных материалов. В этой области используют карбид гафния (t° пл 3890°С), твердый раствор карбидов гафния и тантала (75% карбида тантала) плавящейся при температуре 4200°С. Высокой жаропрочностью характеризуются некоторые сплавы гафния с другими тугоплавкими металлами. Так, сплав ниобия и тантала, содержащий 2-10% Hf и 8-10% W, сохраняет высокую прочность до 2000°С, хорошо обрабатывается и коррозионностоек. Эти свойства материалов позволяют использовать их для изготовления деталей реактивных двигателей, а также тиглей для плавки тугоплавких металлов.

Таким образом, основные соединения циркония, которые нашли широкое применение это цирконовый концентрат и диоксид циркония.

Цирконовый концентрат.

Мировое потребление цирконового концентрата постепенно растет, так в середине 90-х гг. оно оценивалось в 920 тыс. т. , а в 2001 г. составило уже 1,07 млн т. Основные потребители цирконового концентрата - страны Западной Европы (Италия, Испания, Германия и др.) - 366 тыс. т в 2001 г., а также Китай - 150–170 тыс. т, США - 120–130 тыс. т, Япония - 110–120 тыс. т и страны Юго-Восточной Азии.

Большая часть цирконового концентрата используется в керамике (500 тыс. т/год), литейном производстве (170 тыс. т/год) и огнеупорах (155 тыс. т/год), а также в производстве диоксида циркония и других химических соединений (94 тыс. т). Структура потребления цирконового концентрата в различных странах неодинакова. В США наибольшее его количество используют в производстве литейных смесей, в Японии - огнеупоров, в Италии, Испании и Китае - строительной и сантехнической керамики.

В последнее время потребление огнеупоров из циркона сократилось, что связано с ростом спроса на высококачественные легированные стали, производство которых не требует использования цирконовых огнеупоров. Постепенно уменьшается и потребление циркона в литейном производстве из-за появления более экономичных заменителей.

Однако в мире в целом это сокращение с лихвой было компенсировано ростом спроса на циркон в производстве керамики и общим ростом потребления в Китае (с 10 до 160 тыс. т в период 1989–2001 гг.). На производство керамических изделий теперь приходится около половины мирового потребления циркона (в 1980 г. всего 25 %).

Прирост потребления циркона в производстве керамики в 2001 г. составил 9 %, тогда как в целом его использование увеличилось на 5 %. Интенсивно росло потребление в производстве экранов мониторов и телевизоров (8 %), а также химических соединений циркония (7 %).

Диоксид циркония.

Потребление диоксида циркония постоянно растет. В конце 90-х гг. оно составляло 36 тыс. т, из которых половина использовалась в производстве огнеупоров, по 6 тыс. т - керамических пигментов, металла и химических соединений, остальное - в абразивах, электронике, катализаторах, конструкционной керамике и других областях. В 2000–2001 гг. наблюдался значительный рост потребления стабилизированного диоксида циркония, а также порошка оксида циркония для электронной промышленности. Стабилизированный диоксид циркония – уникальный материал, имеющий очень широкий спектр промышленных применений: инженерная (промышленная) керамика, термобарьерные покрытия, электрокерамика, высокотемпературные магнитогидродинамические электроды, топливные элементы, сенсоры на кислород и многое другое. Это разнообразие областей применения базируется на использовании комбинации механических, электрических, термических и других свойств материалов на основе на основе диоксида циркония.

Значительно меньше используют металлический цирконий.

Металлический цирконий.

Потребление металлического циркония в мире стабильно и составляет 4–5 тыс. т.

Цены на цирконий постоянно растут, т.к. растет спрос на эти металлы. Так цены в США на циркониевую губку в 1990 году составляли 19,8 – 26,4$/кг, а на гафниевую губку - 165 – 300$/кг. На циркониевый концентрат: в 1986 году – 209$ /т, в 1989 году – 468$ /т. Поскольку диоксид циркония в различных областях необходим различного качества, то и цены на него должны различаться. Ниже приведены цены на диоксид циркония различного качества. Таблица 4.

Динамка цен на диоксид циркония (долл/т)

(ЕС, США, Япония)

Основные производители циркония и его соединений.

В настоящее время крупными производителями ядерно-чистого циркония в мире являются такие компании: AREVA NP (CEZUS + Zircotube, которые находятся в ее составе), (Франция); АО ТВЭЛ (Россия); Westinghouse (США); GNF (США + Япония); NFC (Индия). Кроме этих компаний циркониевую продукцию выпускают также: Sandvik Steel (Швеция + отделение в США (Sandvik Special Metals) и отделение в Великобритании (Sandvik Steel UK) Nu Tech (Канада, есть отделение в США); Zircatec (Канада); Franco Corradi (Италия); General Electric Canada (Канада); FAESA (Fabrica de Aleaciones Ecpeciales), находящаяся в собственности компании Combustibles Nucleares Argentonos SA,Аргентина)

Полный металлургический цикл от цирконового концентрата до готовых изделий имеют четыре крупных компании: AREVA NP, объем производства примерно 2200 т циркониевой губки в год; АО ТВЭЛ, объем производства примерно 900 т циркония в год; Westinghouse, объем производства примерно 800 т циркония в год, Teledyne Wah Chang, США, объем производства примерно 1000 т циркония в год.
Государственная компания NFC (Индия) также имеет полный металлургический цикл с объемом производства около 250 т циркония в год.

Китайская компания Chaoyang Baisheng Titanium&Zirconim Co, Ltd (Chaoyang, провинция Liaoning) имеет мощности по производству рафинированного тетрахлорида циркония, что позволяет ей выпускать циркониевой губки (150 т для ядерной энергетики).

В настоящее время в Китае идет строительство еще одного завода по выпуску циркония, которое осуществляет совместное предприятие американской компании Westinghouse и китайской компании SNZ.

Основными продуктами гафниевого производства являются кристаллический гафний и оксид гафния. Областей применения гафния по сравнению с цирконием значительно меньше, но и объемы его производства существенно ниже, чем циркония. Это в основном атомная энергетика, производство тугоплавких и жаропрочных материалов и сварка газовых труб большого диаметра.

Цены на гафний (99 %) в 2011 году составляли в среднем $900 за килограмм. За последние полгода из-за финансового кризиса произошло некоторое снижение стоимости.

Самыми крупными производителями гафния являются США, Франция и Германия (предприятия компании CEZUS). В США выпуск гафния осуществляют два предприятия - Wah Chang Albany (компания Allegheny Technologies Inc.) и Western Zirconium (компания Westinghouse Electric, которая в настоящее время контролируется японской корпорацией Toshiba).

Кроме этого гафний производится в Украине Государственным научно-производственным предприятием «Цирконий» г.Днепродзержинск. Предприятие производит следующую гафниевую продукцию: гафний металлический ядерночистый и гафний кальциетермический (КТГ-НР) лигатуру гафний-никель (ГФН-10), гидроксид гафния; оксид гафния.

Так как потенциально гафний является сопутствующим продуктом при выпуске циркония, то он может производиться в различных формах в Индии и Китае. Это такие компании как: NFC (производственная единица Департамента атомной энергии Индии в Хайдерабаде); китайская компания Chaoyang Baisheng Titanium&Zirconim Co, Ltd (Chaoyang, провинция Liaoning) и строящееся совместное предприятие американской компании Westinghouse и китайской компании SNZ.

Сырьевые источники циркония и гафния.

Известно около 20 циркониевых и цирконийсодержащих минералов, однако промышленное значение имеют только два: циркон и бадделеит . На долю первого приходится не менее 97% общего производства циркониевого сырья.

Циркон – наиболее распространенный минерал циркония, представляющий собой ортосиликат циркония – ZrSiO 4 . Содержание гафния в цирконе колеблется от 0,5 до 4%. Кроме этого циркон содержит железо, титан, алюминий, кальций, магний, РЗЭ(0,8%), скандий (0,02-0,08%).

Бадделит – представляет собой практически чистый диоксид циркония (ZrO 2). Всегда содержат гафний (от 0,5% до 2-5%), очень часто торий (0,2%), иногда уран (до 1%), скандий (до 0,06%).

Исследуются возможности промышленного использования таких циркониевых минералов, как эвдиалит – сложный силикат циркония и редких земель иттриевой подгруппы, содержащего 10-16% ZrO 2 и в эвколите ((Na, Ca, Fe) 6 Zr(Si 3 O 9) 2).

Для гафния единственным минеральным источником его получения являются циркониевые концентраты, который содержат от 0,5 до 2,0% HfO 2 .

Циркон и бадделеит накапливаются в корах выветривания и продуктах их переотложения – россыпях ближнего сноса, тесно ассоциирующих с первичными коренными источниками, и в россыпях дальнего переноса, не имеющих прямой связи с коренными источниками. К числу коренных источников относятся современные и древние россыпи прибрежно-морского типа (пляжные, шельфовые, дюнные и др.), с которыми связаны крупные месторождения циркона (совместно с рутилом, ильменитом, монацитом и другими минералами).

Цирконий практически не образует собственных крупных и богатых месторождений, а заключён в коренных рудах и россыпях вместе с титаном, железом, медью, танталом, ниобием, редкими землями, где является одним из основных или попутным полезным компонентом. Добыча циркония из недр всегда тесно связана с титаном и оценивается по отношению к нему как 1:5.

Освоенность минерально-сырьевой базы циркония России крайне низкая: в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита. В Российской Федерации производство цирконовых концентратов практически не осуществляется, хотя имеются значительные запасы месторождений. Чепецкий механический завод (ЧМЗ), г. Глазов. А в странах СНГ подавляющий объём производства цирконовых концентратов приходится на Украину.

По оценке Геологической службы США (USGS) общие мировые запасы циркония (в пересчёте на ZrO 2) составляют около 33,5 млн т (без учёта России и стран СНГ) (табл.5). Цирконий в рудах и россыпях представлен в основном цирконом, бадделеитом, калдаситом и эвдиалитом. Месторождения руд и россыпей, содержащих цирконий, разведаны в Австралии, США, Южно-Африканской Республике, Бразилии, Индии, Китае и других странах.

Исходя из данных по запасам, можно отметить, что разведанные запасы циркония в мире распределяются следующим образом (в %): Австралия - 45, ЮАР - 21, Бразилия - 7, США - 8, Китай - 5,6, Индия-5,7. Освоенность минерально-сырьевой базы циркония России крайне низкая: в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита. В Российской Федерации производство цирконовых концентратов практически не осуществляется. А в странах СНГ подавляющий объём производства цирконовых концентратов приходится на Украину. Украина по запасам циркониевых песков занимает одно из ведущих мест в мире и первое среди стран СНГ.
Разведанные запасы циркона в Украине сосредоточены на действующем Малышевском месторождении в Вольногорске Днепропетровской области. Руда перерабатывается на Верхнеднепровском горно-металлургическом комбинате, производственные мощности которого по переработке составляют 30 тыс. т концентрата в год.

Таблица 5.

Мировые запасы циркония по оценке Геологической службы США (без учета России и стран СНГ)

Отличительной чертой структуры мировых запасов является превалирующая доля титано-циркониевых россыпных месторождений. Основные промышленные мировые запасы циркония (свыше 95%) заключены в прибрежно-морских россыпях (ПМР), где циркон находится вместе с титановыми (ильменит, рутил) и редкоземельными минералами. Среднее содержание циркона в песках ПМР варьирует в широких пределах – от сотых долей процента до трёх процентов (редко достигая 8%). Запасы и ресурсы циркона прибрежно-морских россыпей характеризуются крупными масштабами - до нескольких миллионов тонн двуокиси циркония в отдельных месторождениях.

На долю бадделеитсодержащих руд приходится около 5% мировых промышленных запасов циркония. Его запасы исчисляются первыми сотнями тысяч тонн. По данным "Mining Annual Review", в настоящее время единственным в мире источником бадделеита остается комплексное Ковдорское месторождение, расположенное на юго-западе Кольского п-ова в России. Годовое производство бадделеита здесь превышает 6,5 тыс. т.

Таким образом в настоящее время мировое производство цирконий содержащих концентратов превысило 1,4 млн т. и обеспеченность стран-производителей достоверными запасами циркониевого сырья, рассчитанная по уровню действующих мощностей по добыче, в целом превышает 80 лет.


Переработка циркона.

Поскольку основным сырьевым источником циркония и гафния является циркон, то и технологию производства циркония и его соединений целесообразно начинать с переработки циркона.

Первой стадией переработки циркона, как и для большинства редкометального сырья является обогащение. Обычно руды, содержащие циркон, обогащают гравитационными методами, а для отделения минералов железа применяют магнитную сепарацию. После обогащения цирконовые концентраты содержат ~65% ZrO 2 (концентрат 1-го сорта). Концентраты поступают на стадию разложения.

Цирконий, его сплавы и соединения используют в различных областях техники: атомной энергетике, электронике, пиротехнике, машиностроении, производстве сталей и сплавов с цветными металлами, огнеупоров, керамики и эмалей, литейном производстве.

Пиротехника и производство боеприпасов. Порошки циркония, имеющие низкую температуру воспламенения и высокую скорость сгорания, применяют в качестве воспламенителя в смесях капсулей-детонаторов, а также в смесях для фотовспышки. В смеси с окислителями }

Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.