Факторы влияющие на солнечную радиацию. Солнечная, земная и атмосферная радиация

1. Что называется солнечной радиацией? В каких единицах она измеряется? От чего зависит её величина?

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях или джоулях на один квадратный сантиметр в минуту. Солнечная радиация распределяется по земле неравномерно. Это зависит:

От плотности и влажности воздуха – чем они выше, тем меньше радиации получает земная поверхность;

От географической широты местности – количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади;

От годового и суточного движения Земли – в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

От характера земной поверхности – чем светлее поверхность, тем больше солнечных лучей она отражает.

2. На какие виды разделяют солнечную радиацию?

Существуют следующие виды Солнечной радиации: радиация, достигающая земной поверхности, состоит из прямой и рассеянной. Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию. Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

3. Почему меняется поступление солнечной радиации по сезонам года?

Россия, в своем большинстве, расположена в умеренных широтах, лежащих между тропиком и полярным кругом, в этих широтах Солнце каждый день восходит и заходит, но никогда не бывает в зените. Благодаря тому, что угол наклона Земли не изменен в течение всего её обращения вокруг Солнца, в разные сезоны количество приходящего тепла, в умеренных широтах, различно и зависит от угла Солнца над горизонтом. Так, на широте 450 mах угол падения солнечных лучей (22 июня) составляет приблизительно 680, а min (22 декабря) приблизительно 220. Чем меньше угол падения лучей Солнца, тем меньше тепла они приносят, поэтому отмечаются существенные сезонные различия получаемой солнечной радиации в разные сезоны года: зимы, весны, лета, осени.

4. Для чего необходимо знать высоту Солнца над горизонтом?

Высота Солнца над горизонтом определяет количество тепла приходящего на Землю, поэтому между углом падения солнечных лучей и количеством солнечной радиации, приходящей на земную поверхность, существует прямая зависимость. От экватора к полюсам в целом наблюдается уменьшение угла падения солнечных лучей, и как следствие от экватора к полюсам уменьшается величина солнечной радиации. Таким образом, зная высоту Солнца над горизонтом, можно узнать количество тепла приходящего на земную поверхность.

5. Выберите верный ответ. Общее количество радиации, достигшей поверхности Земли, называется: а) поглощённой радиацией; б) суммарной солнечной радиацией; в) рассеянной радиацией.

6. Выберите верный ответ. При движении к экватору величина суммарной солнечной радиации: а) увеличивается; б) уменьшается; в) не изменяется.

7. Выберите верный ответ. Самый большой показатель отражённой радиации имеет: а) снег; б) чернозём; в) песок; г) вода.

8. Как вы думаете, можно ли в летний пасмурный день загореть?

Суммарная солнечная радиация состоит из двух составляющих: рассеянной и прямой. При этом Солнечные лучи, независимости от своей природы несут в себе ультрафиолет, который и влияет на загар.

9. По карте на рисунке 36 определите суммарную солнечную радиацию для десяти городов России. Какой вывод вы сделали?

Суммарная радиация в разных городах России:

Мурманск: 10 ккал/см2 в год;

Архангельск: 30 ккал/см2 в год;

Москва: 40 ккал/см2 в год;

Пермь: 40 ккал/см2 в год;

Казань: 40 ккал/см2 в год;

Челябинск: 40 ккал/см2 в год;

Саратов: 50 ккал/см2 в год;

Волгоград: 50 ккал/см2 в год;

Астрахань: 50 ккал/см2 в год;

Ростов-на-Дону: более 50 ккал/см2 в год;

Общая закономерность в распределении солнечной радиации такова: чем ближе объект (город) к полюсу, тем меньше солнечной радиации приходиться на него (город).

10. Опишите, чем различаются сезоны года в вашей местности (природные условия, жизнь людей, их занятия). В какой из сезонов года жизнь наиболее активна?

Сложный рельеф, большая протяженность с севера на юг позволяют в области выделить 3 зоны, различающиеся как по рельефу, так и по климатическим характеристикам: горно-лесная, лесостепная и степная. Климат горно-лесной зоны прохладный и влажный. Температурный режим меняется в зависимости от рельефа. Этой зоне характерно короткое прохладное лето и продолжительная снежная зима. Постоянный снежный покров образуется в период с 25 октября по 5 ноября и залегает он до конца апреля, а в отдельные годы снежный покров сохраняется до 10-15 мая. Самым холодным месяцем является январь. Средняя температура зимой минус 15-16° С, абсолютный минимум 44-48° С. Самый теплый месяц - июль со средней температурой воздуха плюс 15-17° С, абсолютный максимум температуры воздуха за лето в этом районе достигал плюс 37-38° С. Климат лесостепной зоны теплый, с достаточно холодной и снежной зимой. Средняя температура января равняется минус 15,5-17,5° С, абсолютный минимум температуры воздуха достигал минус 42-49° С. Средняя температура воздуха в июле равняется плюс 18-19° С. Абсолютный максимум температуры - плюс 42,0° С. Климат степной зоны очень теплый и засушливый. Зима здесь холодная, с сильными морозами, метелями, которые наблюдаются в течение 40-50 дней, вызывая сильный перенос снега. Средняя температура января минус 17-18° С. В суровые зимы минимальная температура воздуха опускается до минус 44-46° С.

Дажьбог у славян, Апполон у древних греков, Митра у индоиранцев, Амон Ра у древних египтян, Тонатиу у ацтеков – этими именами в древнем пантеизме люди называли Бога-Солнце.

С древних времен люди понимали, какое большое значение для жизни на Земле имеет Солнце, и обожествляли его.

Светимость Солнца огромная и составляет 3,85х10 23 кВт. Солнечная энергия, воздействующая на площадь всего в 1 м 2 способна зарядить двигатель в 1,4 кВт.

Источником энергии является термоядерная реакция, проходящая в ядре звезды.

Образующийся при этом 4 He составляет, без малого (0,01%) весь гелий земли.

Звезда нашей системы испускает электромагнитное и корпускулярное излучение. С внешней стороны короны Солнца в космическое пространство «дует» солнечный ветер, состоящий из протонов, электронов и α-частиц. С солнечным ветром теряется ежегодно 2-3х10 -14 массы светила. С корпускулярным излучением связаны магнитные бури и полярное сияние.

Электромагнитное излучение (солнечная радиация) достигает поверхности нашей планеты в виде прямых и рассеянных лучей. Спектральный диапазон его составляют:

  • ультрафиолетовое излучение;
  • рентгеновские лучи;
  • γ-лучи.

На коротковолновую часть приходится всего 7% энергии. Видимый свет составляет 48% энергии радиации Солнца. В основном он составлен сине-зеленым спектром излучения, 45% составляет инфракрасное излучение и только незначительная часть представлена радиоизлучением.

Ультрафиолетовое излучение, в зависимости от длины волны, подразделяют на:

Большая часть ультрафиолетового излучения с большой длиной волны достигает поверхности земли. Количества дошедшей до поверхности планеты УФ-В энергии зависит от состояния озонового слоя. УФ-С почти полностью поглощается озоновым слоем и газами атмосферы. Еще в 1994 г. ВОЗ и ВМО предложили ввести индекс ультрафиолета (UV, Вт/м 2).

Видимая часть света и не поглощается атмосферой, но волны некоторого спектра рассеиваются. Инфракрасный цвет или тепловая энергия в средневолновом диапазоне, в основном, поглощается водяным паром и углекислым газом. Источником длинноволнового спектра является земная поверхность.

Все перечисленные выше диапазоны имеют огромное значение для жизни на Земле. Значительная часть солнечной радиации не попадает на поверхность Земли. У поверхности планеты регистрируется следующие виды излучения:

  • 1% ультрафиолетового;
  • 40% оптического;
  • 59% инфракрасного.

Виды излучений

Интенсивность солнечной радиации зависит от:

  • широты;
  • сезона;
  • времени суток;
  • состояния атмосферы;
  • особенностей и рельефа земной поверхности.

В разных точках Земли солнечная радиация по-разному влияет на живые организмы.

Фотобиологические процессы, протекающие под действием энергии света, в зависимости от их роли, можно подразделить на следующие группы:

  • синтез биологически активных веществ (фотосинтез);
  • фотобиологические процессы, помогающие ориентироваться в пространстве и помогающие получить информацию (фототаксис, зрение, фотопериодизм);
  • повреждающее воздействие (мутации, канцерогенные процессы, деструктивное воздействие на биоактивные вещества).

Расчет инсоляции

Световое излучение оказывает стимулирующий эффект на фотобиологические процессы в организме – синтез витаминов, пигментов, клеточная фотостимуляция. В настоящее время изучается сенсибилизирующее влияние солнечного света.

Ультрафиолетовое излучение, воздействуя на кожные покровы человеческого тела, стимулирует синтез витаминов D, В4 и белков, являющихся регуляторами многих физиологических процессов. Ультрафиолетовое излучение оказывает воздействие на:

  • обменные процессы;
  • иммунную систему;
  • нервную систему;
  • эндокринную систему.

Сенсибилизирующее влияние ультрафиолета зависит от длины волны:

Стимулирующее действие солнечных лучей выражается в повышении специфического и неспецифического иммунитета. Так, например, у детей, которые подвергаются умеренному природному УФ облучению, количество простудных заболеваний снижается на 1/3. При этом эффективность лечения повышается, отсутствуют осложнения, сокращается период заболевания.

Бактерицидные свойства коротковолнового спектра УФ излучения применяются в медицине, пищевой промышленности, фармацевтическом производстве для обеззараживания сред, воздуха и продукции. Ультрафиолетовое излучение уничтожает туберкулезную палочку в течение нескольких минут, стафилококк – за 25 минут, а возбудителя брюшного тифа – за 60 мин.

Неспецифический иммунитет, в ответ на ультрафиолетовое облучение, отвечает увеличением титров комплимента и агглютинации, повышением активности фагоцитов. Но повышенное УФ-облучение вызывает патологические изменения в организме:

  • рак кожи;
  • солнечную эритему;
  • повреждение иммунной системы, которое выражается в появлении веснушек, невусов, солнечных лентиго.

Видимая часть солнечного света:

  • дает возможность получения 80% информации с помощью зрительного анализатора;
  • ускоряет обменные процессы;
  • улучшает настроение и общее самочувствие;
  • согревает;
  • влияет на состояние ЦНС;
  • определяет суточные ритмы.

Степень воздействия инфракрасного излучения зависит от длины волны:

  • длинноволновое – обладает слабой проникающей способностью и в значительной степени поглощается поверхностью кожи, вызывая эритему;
  • коротковолновое – проникает вглубь организма, оказывая сосудорасширяющее действие, болеутоляющее, противовоспалительное.

Кроме воздействия на живые организмы, солнечная радиация имеет большое значение в формировании климата Земли.

Значение солнечной радиации для климата

Солнце является главным источником тепла, формирующим земной климат. На ранних этапах развития Земли Солнце излучало на 30% меньше тепла, чем сейчас. Но благодаря насыщению атмосферы газами и вулканической пылью климат на Земле был влажный и теплый.


В интенсивности инсоляции отмечается цикличность, которая обуславливает потепление и похолодание климата. Цикличностью объясняется малый ледниковый период, наступивший в XIV-XIX вв. и потепление климата, наблюдавшееся в период 1900-1950 гг.

В истории планеты отмечается периодичность изменения наклона оси и экстреситет орбиты, что изменяет перераспределение солнечной радиации на поверхности и влияет на климат. Так, например, эти изменения отражаются на увеличении и уменьшении площади пустыни Сахары.

Межледниковые периоды длятся около 10000 лет. Сейчас Земля находится в межледниковом периоде, который называется гелиоценом. Благодаря ранней сельскохозяйственной деятельности человека этот период длиться дольше, чем рассчитано.

Учеными описаны 35-45 летние циклы изменения климата, во время которых сухой и теплый климат меняется на прохладный и влажный. Они влияют на наполнение внутренних водоемов, уровень Мирового океана, изменение оледенения в Арктике.


Солнечная радиация по-разному распределяется. Так, например, в средних широтах в период с 1984 по 2008 год отмечалось увеличение суммарной и прямой солнечной радиации и уменьшение рассеянной. Изменение интенсивности отмечается и в течение года. Так, пик приходится на май-август, а минимум – на зимний период.

Так как высота Солнца и продолжительность светового дня в летнее время больше, то на этот период приходится до 50% суммарной годовой радиации. А в период с ноября по февраль – всего 5%.

Количество солнечной радиации, попадающей на определенную поверхность Земли, влияет на важные климатические показатели:

  • температуру;
  • влажность;
  • атмосферное давление;
  • облачность;
  • осадки;
  • скорость ветра.

Увеличение солнечной радиации увеличивает температуру и атмосферное давление, остальные характеристики находятся в обратном отношении. Ученые выяснили, что наибольшее влияние на климат оказывают уровни суммарной и прямой радиации Солнца.

Меры защиты от солнечного излучения

Сенсибилизирующее и повреждающее воздействие на человека солнечная радиация проявляет в виде теплового и солнечного удара, негативного воздействия излучения на кожу. Сейчас большое количество знаменитостей присоединились к движению против загара.

Анжелина Джоли, например, говорит, что ради двух недель загара она не хочет жертвовать несколькими годами жизни.

Чтобы защититься от солнечной радиации, необходимо:

  1. загорать в утренние и вечерние часы – самое безопасное время;
  2. пользоваться солнцезащитными очками;
  3. в период активного солнца:
  • покрывать голову и открытые участки тела;
  • использовать солнцезащитный крем с УФ-фильтром;
  • приобрести специальную одежду;
  • защищать себя с помощью широкополой шляпы или зонта от солнца;
  • соблюдать питьевой режим;
  • избегать интенсивных физических нагрузок.

При разумном использовании, солнечная радиация оказывает благотворное влияние на организм человека.

Солнечной радиацией называется поток лучистой энергии солнца, идущей к поверхности земного шара. Лучистая энергия солнца является первичным источником других видов энергии. Поглощаясь поверхностью земли и водой, она превращается в тепловую энергию, а в зеленых растениях - в химическую энергию органических соединений. Солнечная радиация - важнейший фактор климата и основная причина изменений погоды, так как различные явления, совершающиеся в атмосфере, связаны с тепловой энергией, получаемой от солнца.

Солнечная радиация, или лучистая энергия, по своей природе представляет собой поток электромагнитных колебаний, распространяющихся прямолинейно со скоростью 300000 км/сек с длиной волны от 280 нм до 30000 нм. Лучистая энергия испускается в виде отдельных частиц, называемых квантами, или фотонами. Для измерения длины световых волн пользуются нанометрами (нм), или микронами, миллимикронами (0,001 микрона) и анстремами (0,1 миллимикрона). Различают инфракрасные невидимые тепловые лучи с длиной волны от 760 до 2300 нм; световые видимые лучи (красные, оранжевые, желтые, зеленые, голубые, синие и фиолетовые) с длиной волны от 400 (фиолетовые) до 759 нм (красные); ультрафиолетовые, или химические невидимые, лучи с длиной волны от 280 до 390 нм. Лучи с длиной волны меньше 280 миллимикрон до поверхности земли не доходят, вследствие поглощения их озоном в высоких слоях атмосферы.

На грани атмосферы спектральный состав солнечных лучей в процентах такой: инфракрасные лучи 43%, световые 52 и ультрафиолетовые 5%. У земной поверхности при высоте стояния солнца 40° солнечная радиация имеет (по Н. П. Калитину) следующий состав: инфракрасные лучи 59%, световые 40 и ультрафиолетовые 1% всей энергии. Напряжение солнечной радиации увеличивается с высотой над уровнем моря, а также тогда, когда солнечные лучи падают вертикально, так как лучам приходится проходить меньшую толщу атмосферы. В других случаях поверхность будет получать солнечных лучей тем меньше, чем ниже солнце, или в зависимости от угла падения лучей. Напряжение солнечной радиации понижается вследствие облачности, загрязнения атмосферного воздуха пылью, дымом и пр.

Причем в первую очередь происходит потеря (поглощение) коротковолновых лучей, а затем тепловых и световых. Лучистая энергия солнца - источник жизни на земле растительных и животных организмов и важнейший фактор окружающей воздушной среды. Она оказывает разнообразное влияние на организм, которое при оптимальном дозировании бывает весьма положительным, а при чрезмерном (передозировке) может быть отрицательным. Все лучи обладают как тепловым, так и химическим действием. Причем у лучей с большой длиной волн на первый план выступает тепловое действие, а с меньшей длиной - химическое.

Биологическое действие лучей на организм животного зависит от длины волны и их амплитуды: чем короче волны, тем чаще их колебания, тем больше энергия квант и тем сильнее реакция организма на такое облучение. Коротковолновые, ультрафиолетовые лучи при воздействии на ткани вызывают в них явления фотоэлектрического эффекта с появлением в атомах отщепленных электронов и положительных ионов. Глубина проникновения разных лучей в тело неодинакова: инфракрасные и красные лучи проникают на несколько сантиметров, видимые (световые) - на несколько миллиметров, а ультрафиолетовые - только на 0,7-0,9 мм; лучи короче 300 миллимикрон проникают в ткани животных на глубину до 2 миллимикрон. При такой незначительной глубине проникновения лучей последние оказывают многообразное и значительное влияние на весь организм.

Солнечная радиация - весьма биологически активный и постоянно действующий фактор, имеющий огромное значение в формировании целого ряда функций организма. Так, например, через посредство глаза видимые световые лучи оказывают влияние на весь организм животных, вызывая безусловные и условно-рефлекторные реакции. Инфракрасные тепловые лучи оказывают свое влияние на организм как непосредственно, так и через окружающие животных предметы. Тело животных непрерывно поглощает и само излучает инфракрасные лучи (радиационный обмен), и этот процесс может значительно изменяться в зависимости от температуры кожи животных и окружающих предметов. Ультрафиолетовые химические лучи, кванты которых имеют значительно большую энергию, чем кванты видимых и инфракрасных лучей, отличаются наибольшей биологической активностью, действуют на организм животных гуморальным и нервнорефлекторным путями. Уф-лучи прежде всего действуют на экстерорецепторы кожи, а затем рефлекторно влияют на внутренние органы, в частности на эндокринные железы.

Продолжительное воздействие оптимальных доз лучистой энергии приводит к адаптации кожи, к меньшей реактивности ее. Под влиянием солнечных лучей усиливаются рост волос, функция потовых и сальных желез, утолщается роговой слой и уплотняется эпидермис, что ведет к повышению сопротивляемости кожи организма. В коже происходит образование биологически активных веществ (гистамина и гистамино-подобных веществ), которые поступают в кровь. Эти же лучи ускоряют регенерацию клеток при заживлении ран и язв на коже. Под действием лучистой энергии, особенно ультрафиолетовых лучей, в базальном слое кожи образуется пигмент меланин, понижающий чувствительность кожи к ультрафиолетовым лучам. Пигмент (загар) представляет собой как бы биологический экран, способствующий отражению и рассеиванию лучей.

Положительное действие солнечных лучей сказывается на крови. Систематическое умеренное воздействие их значительно усиливает кроветворение с одновременным увеличением в периферической крови количества эритроцитов и содержания гемоглобина. У животных после кровопотерь или переболевших тяжелыми болезнями, особенно инфекционными, умеренные облучения солнечными лучами стимулируют регенерацию крови и повышают ее свертываемость. От умеренного воздействия солнечных лучей у животных увеличивается газообмен. Возрастает глубина и уменьшается частота дыхания, увеличивается количество вводимого кислорода, больше выделяется углекислоты и водяных паров, в связи с чем улучшается кислородное питание тканей и повышаются окислительные процессы.

Увеличение белкового обмена выражается повышенным отложением азота в тканях, в результате чего прирост у молодых животных идет быстрее. Чрезмерное солнечное облучение может вызвать отрицательный белковый баланс, особенно у животных, страдающих острыми инфекционными болезнями, а также другими заболеваниями, сопровождающимися повышенной температурой тела. Облучение ведет к повышенному отложению сахара в печени и мышцах в виде гликогена. В крови резко снижается количество недоокисленных продуктов (ацетоновых тел, молочной кислоты и др.), повышается образование ацетилхолина и нормализуется обмен веществ, что имеет особо важное значение для высокопродуктивных животных.

У истощенных животных замедляется интенсивность жирового обмена и повышается отложение жира. Интенсивное освещение у ожиревших животных, наоборот, повышает жировой обмен и вызывает усиленное сгорание жира. Поэтому — полусальный и сальный откорм животных целесообразно проводить в условиях меньшего солнечного облучения.

Под влиянием ультрафиолетовых лучей солнечной радиации находящиеся в кормовых растениях эргостерин и в коже животных дегидрохолестерин превращаются в активные витамины D 2 и D 3 , которые усиливают фосфорно-кальциевый обмен; отрицательный баланс кальция и фосфора переходит в положительный, что способствует отложению этих солей в костях. Солнечный свет и искусственное облучение ультрафиолетовыми лучами - один из действенных современных методов профилактики и лечения рахита и других заболеваний животных, связанных с нарушением обмена кальция и фосфора.

Солнечная радиация, особенно световые и ультрафиолетовые лучи, является основным фактором, вызывающим у животных сезонную половую периодичность, так как свет стимулирует гонадотропную функцию гипофиза и других органов. Весной, в период увеличения напряженности солнечной радиации и световой экспозиции, секреция половых желез, как правило, у большинства видов животных усиливается. Увеличение половой активности у верблюдов, овец и коз наблюдается с укорочением продолжительности светового дня. Если овец в апреле-июне содержать в затемненных помещениях, то течка у них наступит не осенью (как обычно), а в мае. Недостаток света у растущих животных (в период роста и полового созревания), по данным К. В. Свечина, приводит к глубоким, часто необратимым качественным изменениям в половых железах, а у взрослых животных снижает половую активность и оплодотворяемость или вызывает временное бесплодие.

Видимый свет или степень освещенности оказывает значительное влияние на развитие яйцеклеток, течку, продолжительность случного сезона и беременности. В северном полушарии случной сезон бывает обычно коротким, а в южном наиболее продолжительным. Под влиянием искусственного освещения животных сокращается у них продолжительность беременности от нескольких дней до двух недель. Влияние видимых световых лучей на половые железы может быть широко использовано в практике. Опытами, проведенными в лаборатории зоогигиены ВИЭВ, доказано, что освещенность помещений по геометрическому коэффициенту 1: 10 (по КЕО, 1,2-2%) по сравнению с освещенностью 1: 15-1: 20 и ниже (по КЕО, 0,2-0,5%) положительно отражается на клинико-физиологическом состоянии супоросных свиноматок и поросят до 4-месячного возраста, обеспечивает получение крепкого и жизнеспособного потомства. Повышаются привесы поросят на 6% и сохранность их на 10-23,9%.

Солнечные лучи, особенно ультрафиолетовые, фиолетовые и синие, убивают или ослабляют жизнеспособность многих патогенных микроорганизмов, задерживают их размножение. Таким образом, солнечная радиация является мощным естественным дезинфектором внешней среды. Под воздействием солнечных лучей повышается общий тонус организма и сопротивляемость его к инфекционным заболеваниям, а также возрастают специфические иммунные реакции (П. Д. Комаров, А. П. Онегов и др.). Доказано, что умеренное облучение животных при вакцинации способствует повышению титра и других иммунных тел, росту фагоцитарного показателя, и, наоборот, интенсивное облучение понижает иммунные свойства крови.

Из всего сказанного следует, что недостаток солнечной радиации необходимо рассматривать как весьма неблагоприятное внешнее условие для животных, при котором они лишаются важнейшего активатора физиологических процессов. Учитывая это, животных нужно размещать в достаточно светлых помещениях, регулярно предоставлять им моцион, а летом содержать на пастбище.

Нормирование естественного освещения в помещениях производится по геометрическому или светотехническому методам. В практике строительства животноводческих и птицеводческих помещений в основном применяют геометрический метод, по которому нормы естественного освещения определяют отношением площади окон (стекла без рам) к площади пола. Однако, несмотря на простоту геометрического метода, нормы освещенности при помощи его устанавливаются не точно, так как в данном случае не принимают во внимание свето-климатические особенности разных географических зон. Для более точного определения освещенности в помещениях пользуются светотехническим методом, или определением коэффициента естественной освещенности (КЕО). Коэффициентом естественной освещенности называется отношение освещенности помещения (измеряемой точки) к наружной освещенности в горизонтальной плоскости. КЕО выводится по формуле:

K = E:E н ⋅100%

Где К - коэффициент естественного освещения; Е - освещенность в помещении (в люксах); Е н - освещенность вне помещения (в люксах).

Необходимо иметь в виду, что неумеренное пользование солнечной радиацией, особенно в дни с высокой инсоляцией, может причинить животным значительный вред, в частности вызвать ожог, заболевание глаз, солнечный удар и пр. Чувствительность к воздействию солнечных лучей значительно повышается от введения в организм так называемых сенсибилизаторов (гематопорфирина, желчных пигментов, хлорофилла, эозина, метиленовой синьки и др.). Считают, что эти вещества аккумулируют коротковолновые лучи и превращают их в длинноволновые с поглощением части освобожденной тканями энергии, вследствие чего увеличивается реактивность тканей.

Солнечный ожог у животных чаще наблюдают на участках тела с нежной, мало покрытой волосами, непигментированной кожей в результате воздействия тепловых (солнечная эритема) и ультрафиолетовых лучей (фотохимическое воспаление кожи). У лошадей солнечные ожоги отмечают на непигментированных местах кожи головы, губ, ноздрей, шеи, паха и конечностей, а у крупного рогатого скота на коже сосков вымени и промежности. В южных районах возможны солнечные ожоги у свиней белой масти.

Сильный солнечный свет может вызвать раздражение сетчатки, роговой и сосудистых оболочек глаза и повреждение хрусталика. При продолжительной и интенсивной радиации возникают кератиты, помутнение хрусталика и нарушение аккомодации зрения. Нарушение аккомодации чаще наблюдают у лошадей, если их содержат в конюшнях с низкими окнами, обращенными на южную сторону, против которых привязывают лошадей.

Солнечный удар возникает в результате сильного и продолжительного перегревания головного мозга преимущественно тепловыми инфракрасными лучами. Последние проникают через кожу головы и черепную коробку, достигают мозга и вызывают гиперемию и повышение температуры его. Вследствие этого у животного сначала появляется угнетение, а затем возбуждение, нарушаются дыхательный и сосудодвигательный центры. Отмечают слабость, некоординированные движения, одышку, учащенный пульс, гиперемию и цианоз слизистых оболочек, дрожь и судороги. Животное не держится на ногах, падает на землю; тяжелые случаи нередко заканчиваются смертью животного при явлениях паралича сердца или дыхательного центра. Солнечный удар особенно тяжело протекает, если он сочетается с тепловым ударом.

Для защиты животных от действия прямых солнечных лучей необходимо держать их в наиболее жаркие часы дня в тени. Чтобы предупредить солнечный удар, в частности у рабочих лошадей, им надевают белые парусиновые налобники.

Солнечная радиация

Со́лнечная радиа́ция

электромагнитное излучение, исходящее от Солнца и поступающее в земную атмосферу. Длины волн солнечной радиации сосредоточены в диапазоне от 0,17 до 4 мкм с макс. на волне 0,475 мкм. Ок. 48 % энергии солнечного излучения приходится на видимую часть спектра (дл. волны от 0,4 до 0,76 мкм), 45 % – на инфракрасную (более 0,76, мкм), и 7 % – на ультрафиолетовую (менее 0,4 мкм). Солнечная радиация – осн. источник энергии процессов в атмосфере, океане, биосфере и т. д. Она измеряется в единицах энергии на единицу площади в единицу времени, напр. Вт/м². Солнечная радиация на верхней границе атмосферы на ср. расстоянии Земли от Солнца называется солнечной постоянной и составляет ок. 1382 Вт/м². Проходя сквозь земную атмосферу, солнечная радиация меняется по интенсивности и спектральному составу вследствие поглощения и рассеяния на частицах воздуха, газовых примесей и аэрозоля. У поверхности Земли спектр солнечного излучения ограничен 0,29–2,0 мкм, а интенсивность существенно снижена в зависимости от содержания примесей, высоты над уровнем моря и облачности. До земной поверхности доходит прямая радиация, ослабленная при прохождении сквозь атмосферу, а также рассеянная, образовавшаяся при рассеянии прямой в атмосфере. Часть прямой солнечной радиации отражается от земной поверхности и облаков и уходит в космос; рассеянная радиация также частично уходит в космос. Остальная солнечная радиация в осн. переходит в тепло, нагревая земную поверхность и частично воздух. Солнечная радиация, т. обр., представляет собой одну из осн. составляющих радиационного баланса.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


Смотреть что такое "солнечная радиация" в других словарях:

    Электромагнитное и корпускулярное излучения Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Большой Энциклопедический словарь

    солнечная радиация - Полный поток электромагнитной радиации, излучаемой Солнцем и попадающий на Землю … Словарь по географии

    У этого термина существуют и другие значения, см. Радиация (значения). В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомн … Википедия

    Все процессы на поверхности земного шара, каковы бы они ни были, имеют своим источником солнечную энергию. Изучаются ли процессы чисто механические, процессы химические в воздухе, воде, почве, процессы ли физиологические или какие бы то ни было… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Электромагнитное и корпускулярное излучение Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Энциклопедический словарь

    солнечная радиация - Saulės spinduliuotė statusas T sritis fizika atitikmenys: angl. solar radiation vok. Sonnenstrahlung, f rus. излучение Солнца, n; солнечная радиация, f; солнечное излучение, n pranc. rayonnement solaire, m … Fizikos terminų žodynas

    солнечная радиация - Saulės spinduliuotė statusas T sritis ekologija ir aplinkotyra apibrėžtis Saulės atmosferos elektromagnetinė (infraraudonoji 0,76 nm sudaro 45 %, matomoji 0,38–0,76 nm – 48 %, ultravioletinė 0,38 nm – 7 %) šviesos, radijo bangų, gama kvantų ir… … Ekologijos terminų aiškinamasis žodynas

    Излучение Солнца электромагнитной и корпускулярной природы. С. р. основной источник энергии для большинства процессов, происходящих на Земле. Корпускулярная С. р. состоит в основном из протонов, обладающих около Земли скоростями 300 1500… … Большая советская энциклопедия

    Эл. магн. и корпускулярное излучение Солнца. Эл. магн. излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетич. максимум приходится на видимую часть спектра. Корпускулярная составляющая С. р. состоит гл. обр. из… … Естествознание. Энциклопедический словарь

    прямая солнечная радиация - Солнечная радиация, поступающая непосредственно от солнечного диска … Словарь по географии

Книги

  • Солнечная радиация и климат Земли , Федоров Валерий Михайлович. В книге приводятся результаты исследований вариаций инсоляции Земли, связанных с небесно-механическими процессами. Анализируются низкочастотные и высокочастотные изменения солярного климата…

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.