Как возникают продольные и поперечные деформации. Продольная и поперечная деформация. Диаграмма растяжения малоуглеродистой стали

Рассмотрим деформации, возникающие при растяжении и сжатии стержней. При растяжении длина стержня увеличивается, а поперечные размеры сокра­щаются. При сжатии, наоборот, длина стержня уменьшается, а поперечные размеры увеличиваются. На рис.2.7 пунктиром показан деформированный вид растянутого стержня.

ℓ – длина стержня до приложения нагрузки;

ℓ 1 – длина стержня после приложения нагрузки;

b – поперечный размер до приложения нагрузки;

b 1 – поперечный размер после приложения нагрузки.

Абсолютная продольная деформация ∆ℓ = ℓ 1 – ℓ.

Абсолютная поперечная деформация ∆b = b 1 – b.

Значение относительной линейной деформации ε можно определить как отношение абсолютного удлинения ∆ℓ к первоначальной длине бруса ℓ

Аналогично находятся поперечные деформации

При растяжении поперечные размеры уменьшаются: ε > 0, ε′ < 0; при сжатии: ε < 0, ε′ > 0. Опыт показывает, что при упругих деформациях поперечная всегда прямо пропорциональна продольной.

ε′ = – νε. (2.7)

Коэффициент пропорциональности ν называется коэффициентом Пуассона или коэффициентом поперечной деформации . Он представляет собой абсолютную величину отношения поперечной деформации к продольной при осевом растяжении

Назван по имени французского учёного, впервые предложившего его в начале XIX века. Коэффициент Пуассона есть величина постоянная для материала в пределах упругих деформаций (т.е. деформаций, исчезающих после снятия нагрузки). Для различных материалов коэффициент Пуассона изменяется в пределах 0 ≤ ν ≤ 0,5: для стали ν = 0,28…0,32; для резины ν = 0,5; для пробки ν = 0.

Между напряжениями и упругими деформациями существует зависимость, известная под названием закон Гука :

σ = Еε. (2.9)

Коэффициент пропорциональности Е между напряжением и деформацией называется модулем нормальной упругости или модулем Юнга. Размерность Е такая же, как и у напряжения. Так же, как и ν, Е – упругая постоянная материала. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформация. Для стали Е = (2...2,2)10 5 МПа или Е = (2...2,2)10 4 кН/см 2 .

Подставляя в формулу (2.9) значение σ по формуле (2.2) и ε по формуле (2.5) , получим выражение для абсолютной деформации

Произведение EF называется жёсткостью бруса при растяжении и сжатии .

Формулы (2.9) и (2.10) – это разные формы записи закона Гука, предложенного в середине XVII века. Современная форма записи этого фундаментального закона физики появилась гораздо позже – в начале XIX века.


Формула (2.10) справедлива лишь в пределах тех участков, где сила N и жёсткость EF постоянны. Для ступенчатого стержня и стержня, нагруженного несколькими силами, удлинения подсчитываются по участкам с постоянными N и F и результаты суммируются алгебраически

Если эти величины изменяются по непрерывному закону, ∆ℓ вычисляется по формуле

В ряде случаев для обеспечения нормальной работы машин и сооружений размеры их деталей должны быть выбраны так, чтобы кроме условия прочности обеспечивалось условие жёсткости

где ∆ℓ – изменение размеров детали;

[∆ℓ] – допускаемая величина этого изменения.

Подчёркиваем, что расчет на жёсткость всегда дополняет расчёт на прочность.

2.4. Расчёт стержня с учетом собственного веса

Простейшим примером задачи о растяжении стержня с переменными по длине параметрами является задача о растяжении призматического стержня под действием собственного веса (рис.2.8,а). Продольная сила N x в поперечном сечении этого бруса (на расстоянии x от его нижнего конца) равна силе тяжести нижележащей части бруса (рис.2.8,б), т.е.

N x = γFx, (2.14)

где γ – объёмный вес материала стержня.

Продольная сила и напряжения меняются по линейному закону, достигая максимума в заделке. Осевое перемещение произвольного сечения равно удлинению вышерасположенной части бруса. Поэтому определить его нужно по формуле (2.12), интегрирование вести от текущего значения х до х = ℓ:

Получили выражение для произвольного сечения стержня

При х = ℓ перемещение наибольшее, оно равно удлинению стержня

На рис.2.8,в,г,д приведены графики N x , σ х и u x

Умножим числитель и знаменатель формулы (2.17) на F и получим:

Выражение γFℓ равно собственному весу стержня G. Поэтому

Формула (2.18) может быть сразу получена из (2.10)., если помнить, что равнодействующая собственного веса G должна быть приложена в центре тяжести стержня и поэтому она вызывает удлинение только верхней половины стержня (рис.2.8,а).

Если стержни, кроме собственного веса, нагружены ещё сосредоточенными продольными силами, то напряжения и деформации определяют на основе принципа независимости действия сил отдельно от сосредоточенных сил и от собственного веса, после чего результаты складывают.

Принцип независимости действия сил вытекает из линейной деформируемости упругих тел. Суть его заключается в том, что любая величина (напряжение, перемещение, деформация) от действия группы сил может быть получена как сумма величин, найденных от каждой силы в отдельности.

При действии растягивающих сил по оси бруса длина его увеличивается, а по­перечные размеры уменьшаются. При действии сжимающих усилий происходит обратное явление. На рис. 6 показан брус, растягиваемый двумя силами Р. В результате рас­тяжения брус удлинился на величину Δl , которая называется абсолютным удлинением, и получим абсолютное поперечное сужение Δа.

Отношение величины абсолютного удлинения и укорочения к первоначальной длине или ширине бруса называется относительной деформацией . В данном случае относительная деформация называется продольной деформацией , а - относительной поперечной деформацией . Отношение относительной поперечной деформации к относительной продольной деформации называется коэффициентом Пуассона : (3.1)

Коэффициент Пуассона для каждого материала как упругая константа определяется опытным путем и находится в пределах: ; для стали .

В пределах упругих деформаций установлено, что нормальное напряжение прямо пропорционально относительной продольной деформации. Эта зависимость называется законом Гука:

, (3.2)

где Е - коэффициент пропорциональности, называемый модулем нормальной упругости .

Отношение абсолютного удлинения стержня к его первоначальной длине называетсяотносительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
.
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициент Пуассона изменяется в пределах. Например, для пробки, для каучука, для стали, для золота.

Закон Гука
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь - сила, которой растягивают (сжимают) стержень, - абсолютное удлинение (сжатие) стержня, а - коэффициент упругости (или жёсткости).
Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.
Если ввести относительное удлинение

И нормальное напряжение в поперечном сечении

То закон Гука в относительных единицах запишется как

В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

Модуль Юнга
Модуль Юнга (модуль упругости) - физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации.
Модуль Юнга рассчитывается следующим образом:

Где:
E - модуль упругости,
F - сила,
S - площадь поверхности, по которой распределено действие силы,
l - длина деформируемого стержня,
x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

Где - плотность вещества.
Коэффициент Пуассона
Коэффициент Пуассона (обозначается как или) - абсолютная величина отношения поперечной к продольной относительной деформации образца материала. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец.
Уравнение
,
где
- коэффициент Пуассона;
- деформация в поперечном направлении (отрицательна при осевом растяжении, положительна при осевом сжатии);
- продольная деформация (положительна при осевом растяжении, отрицательна при осевом сжатии).

Рассмотрим прямой стержень постоянного поперечного сечения, жестко закрепленный сверху. Пусть стержень имеет длину и нагружен растягивающей силой F . От действия этой силы длина стержня увеличивается на некоторую величину Δ (рис.9.7,а).

При сжатии стержня такой же силой F длина стержня сократится на такую же величину Δ (рис.9.7,б).

Величина Δ , равная разности между длинами стержня после деформации и до деформации, называется абсолютной линейной деформацией (удлинением или укорочением) стержня при его растяжении или сжатии.

Отношение абсолютной линейной деформации Δ к первоначальной длине стержня называется относительной линейной деформацией и обозначается буквой ε илиε x ( где индекс x указывает направление деформации). При растяжении или сжатии стержня величину ε просто называют относительной продольной деформацией стержня. Она определяется по формуле:

Многократные исследования процесса деформирования растянутого или сжатого стержня в упругой стадии, подтвердили существование прямой пропорциональной зависимости между нормальным напряжением и относительной продольной деформацией. Эта зависимость называется законом Гука и имеет вид:

Величина E называется модулем продольной упругости или модулем первого рода. Она является физической постоянной (константой) для каждого вида материала стержня и характеризует его жесткость. Чем больше величина E , тем меньше будет продольная деформация стержня. Величина E измеряется в тех же единицах, что и напряжение, то есть в Па , МПа , и тому подобное. Величины модуля упругости содержатся в таблицах справочной и учебной литературы. Например, величина модуля продольной упругости стали принимается равной E = 2∙10 5 МПа , а древесины

E = 0,8∙10 5 МПа.

При расчете стержней на растяжение или сжатие, часто возникает необходимость определения величины абсолютной продольной деформации , если известна величина продольной силы, площадь поперечного сечения и материал стержня. Из формулы (9.8) найдем: . Заменим в этом выражении ε его значением из формулы (9.9). В результате получим = . Если использовать формулу нормального напряжения , тополучим окончательную формулу для определения абсолютной продольной деформации:

Произведение модуля продольной упругости на площадь поперечного сечения стержня называется его жесткостью при растяжении или сжатии.

Анализируя формулу (9.10) сделаем существенный вывод: абсолютная продольная деформация стержня при растяжении (сжатия) прямо пропорциональная произведению продольной силы на длину стержня и обратно пропорциональная его жесткости .

Заметим, что формула (9.10) может быть использована в том случае, когда поперечное сечение стержня и продольная сила имеют постоянные значения по всей его длине. В общем случае, когда стержень имеет ступенчато переменную жесткость и загружен по длине несколькими силами, нужно разделить его на участки и определить абсолютные деформации каждого из них по формуле (9.10).

Алгебраическая сумма абсолютных деформаций каждого участка будет равняться абсолютной деформации всего стержня, то есть:

Продольные деформации стержня от действия равномерно распределенной нагрузки вдоль его оси (например, от действия собственного веса), определяется следующей формулой, которую приводим без доказательства:

В случае растяжения или сжатия стержня, кроме продольных деформаций возникают также поперечные деформации, как абсолютные, так и относительные. Обозначим через b размер поперечного сечения стержня до деформации. При растяжении стержня силой F этот размер уменьшится на величину Δb , которая является абсолютной поперечной деформацией стержня. Эта величина имеет отрицательный знак.При сжатии, напротив, абсолютная поперечная деформация будет иметь положительный знак (рис. 9.8).

Рассмотрим прямой брус постоянного сечения длиной заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 8.2, а). Под действием силы Р брус удлиняется на некоторую величину которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние и, следовательно, линейные деформации (см. § 5.1) для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения к первоначальной длине бруса I, т. е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают .

Следовательно,

Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 8.2, а), а деформацию сжатия - отрицательной (рис. 8.2, б).

Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности (см. § 6.1, п. 4), опытом установлена следующая зависимость:

Здесь N - продольная сила в поперечных сечениях бруса; - площадь поперечного сечения бруса; Е - коэффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса получаем

Абсолютное удлинение бруса выражается формулой

т. е. абсолютная продольная деформация прямо пропорциональна продольной силе.

Впервые закон о прямой пропорциональности между силами и деформациями сформулировал (в 1660 г.). Формулы (10.2)-(13.2) являются математическими выражениями закона Гука при растяжении и сжатии бруса.

Более общей является следующая формулировка закона Гука [см. формулы (11.2) и (12.2)]: относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е, входящая в формулы (10.2)-(13.2), называется модулем упругости первого рода (сокращенно-модулем упругости) Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформация.

Произведение назовем жесткостью поперечного сечения бруса при растяжении и сжатии.

В приложении I приведены значения модулей упругости Е для различных материалов.

Формулой (13.2) можно пользоваться для вычисления абсолютной продольной деформации участка бруса длиной лишь при условии, что сечение бруса в пределах этого участка постоянно и продольная сила N во всех поперечных сечениях одинакова.

Кроме продольной деформации, при действии на брус сжимающей или растягивающей силы наблюдается также поперечная деформация. При сжатии бруса поперечные размеры его увеличиваются, а при растяжении - уменьшаются. Если поперечный размер бруса до приложения к нему сжимаюших сил Р обозначить b, а после приложения этих сил (рис. 9.2), то величина будет обозначать абсолютную поперечную деформацию бруса.

Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости (см. § 6.1, п. 3), относительная поперечная деформация прямо пропорциональна относительной продольной деформации , но имеет обратный знак:

Коэффициент пропорциональности в формуле (14.2) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение относительной поперечной деформации к продольной, взятое по абсолютной величине, т. е.

Коэффициент Пуассона наряду с модулем упругости Е характеризует упругие свойства материала.

Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других металлов (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36. Ориентировочные значения коэффициента Пуассона для различных материалов приведены в приложении I.




Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.