Какая сила называется критической. Научная электронная библиотека. Выбор материала и рациональной формы сечения

Лекция №23

Тема: «УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ»

Вопросы:

2.

3.

1. Понятие об устойчивости и критической силе

Несущая способность сжатого стержня может оказаться исчерпанной вследствие потери устойчивости, т.е. в результате выпучивания, которое происходит раньше, чем стержень выйдет из строя непосредственно от сжатия.

При малой сжимающей силе, меньшей некоторого критического значения , сжатый стержень находится в устойчивой форме равновесия. Если его вывести из состояния равновесия незначительной горизонтальной силой, а затем эту силу убрать, то он распрямится.

Вторая форма равновесия соответствует случаю, когда
.

При
прямолинейная форма сжатого стержня неустойчива и если вывести его из состояния равновесия, а затем убрать боковую нагрузку, то он полностью не распрямится, т.е. у него будет криволинейная форма равновесия. Такой стержень теряет устойчивость.

Потеря устойчивости весьма опасна с точки зрения прочности стержня и всей конструкции в целом. Незначительные повышения нагрузки вызывают значительные перемещения точек, т.е. изгиб стержня. В результате возникает изгибающий момент и связанные с ним нормальные напряжения. Это может привести к дальнейшему изгибу и разрушению стержня. Изгиб стержня от сжимающей силы называется продольным изгибом. Продольный изгиб может уменьшать несущую способность стержня в десятки раз.

Появление продольного изгиба опасно тем, что при нем происходит очень сильное нарастание прогибов при малом возрастании сжимающей силы. Прогибы и нагрузки связаны между собой нелинейной зависимостью. Быстрое нарастание прогибов вызывает быстрое нарастание напряжений от изгиба, которые в свою очередь приводят к ускорению деформаций и часто к разрушению стержня.

Для тонких (гибких) стержней потеря устойчивости часто наступает при сравнительно небольших сжимающих напряжениях, не являющихся опасными с точки зрения прочности самого материала.

Критическая сила – это наименьшее значение сжимающей силы, при которой стержень теряет устойчивую форму равновесия.

По определению Эйлера, критической силой называется сила, требующаяся для самого малого наклонения колонны.

Потеря устойчивости зачастую является главной причиной катастроф и аварий конструкций.

2. Формула Эйлера для критической силы

Рассмотрим сжатый стержень в критическом состоянии, т.е. когда он слегка прогнулся (см. рис. 1). В произвольном сечении взятом на расстоянии z от левого конца стержня, изгибающий момент от критической силы
равен:

,

где – прогиб стержня.

Знак «минус» взят потому, что стержень изгибается концами вниз. Если бы стержень прогнулся дугой вниз, то момент был бы положительным, но прогиб – отрицательный, и произведение
было бы, все равно, со знаком «минус».

Рис. 1

Согласно формуле
запишем дифференциальное уравнение изогнутой оси стержня:

(1)

При сжатии стержня вдоль оси, он всегда изгибается относительно той оси, момент инерции относительно которой минимальный. В этом можно убедиться, сжимая линейку. Поэтому в формуле (1) берем минимальный осевой момент инерции сечения. Преобразуем уравнение (1):

;

Обозначив:

(2)

(3)

Это линейное дифференциальное уравнение второго порядка. Его решение имеет вид:

Для определения произвольных постоянных А и В используем граничные условия.

При z=0; у=0;

Уравнение примет вид:

. (5)

Как видно из уравнения (5), стержень изогнется по синусоиде.

Второе граничное условие:

При z=l ; у=0;

Это условие выполняется в двух случаях:

1)
2)

Первый случай отбрасываем, так как при нем прогибы всех точек равны нулю, т.е. стержень остается прямым.

При втором случае:

Возьмем общий случай:

Возведем в квадрат обе части уравнения:

Вместо подставим его значение из формулы (2):

Принимая
,
и т.д., получим последовательный ряд значений
, которым соответствуют различные искривленные формы равновесия стержня. С точки зрения расчета на устойчивость нас интересует лишь наименьшее значение критической силы, так как уже при этом значении силы стержень теряет устойчивость. Поэтому
и формула принимает вид:

(6)

Критическая сила зависит от способа закрепления концов стержня, поэтому вводится коэффициент – коэффициент приведенной длины (не путать с коэффициентом поперечной деформации). В общем случае формула Эйлера примет вид:

(7)

Значения коэффициента даны на рис. 2

Рис. 2

3. Пределы применимости формулы Эйлера. Формула Ясинского

Формула Эйлера выведена на основании дифференциального уравнения изогнутой оси стержня, которое основано на законе Гука. Закон Гука применим до тех пор, пока напряжение не превысит предела пропорциональности .

При сжатии стержня напряжения определяют по формуле
. Поэтому:

; (8)

или подставив значение
из формулы (7), получим:

;

Из формулы
следует:

,

где
– минимальный радиус инерции сечения.

;

Обозначим:

; (9)

где – гибкость стержня, величина безразмерная.

;

. (10)

Формула (10) позволяет определить значение гибкости стержня, до которого применима формула Эйлера. Например, для стали Ст. 3:
;
.

.

Следовательно, если гибкость равна или больше 100, то формулу Эйлера можно применять, если же меньше то нет.

Если гибкость стержня меньше, чем величина, определяемая по формуле (10), то пользуются формулой Ясинского:

(11)

где а и b – постоянные, зависящие от материала.

При гибкостях до 40 стержни рассчитывают только на прочность.

4. Рациональные формы сечений сжатых стержней

При заданных нагрузке, длине стержня, допускаемом напряжении форма и размеры поперечного сечения сжатого стержня характеризуются величиной радиуса инерции

.

Радиус инерции i – величина размерная. Для сравнения различных сечений между собой более удобной является безразмерная величина следующего вида:

(12)

которую называют удельным радиусом инерции.

В табл. 1 приведены значения
для некоторых, наиболее распространенных сечений.

Таблица 1

Как видим, наименее выгодными являются прямоугольные сплошные сечения, у которых моменты инерции относительно главных осей не равны между собой и, следовательно, не соблюдается принцип равной устойчивости стержня в обеих главных плоскостях инерции.

Наиболее выгодными являются кольцевые, а также коробчатые тонкостенные сечения. Подсчеты показывают, что замена сжатых сечений в виде уголков и двутавров трубчатыми стержнями дает экономию материала до 20-40%.

Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

Рис.1

Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

а изогнутая ось представляет синусоиду

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

Значит, а — это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F ; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда

Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.

Из последнего выражения видно видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно

Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

Влияние способа закрепления концов стержня.

Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня.

Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить" к основному случаю.

Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.


Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.

Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.

Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ . Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.

Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та,же, что для стойки с шарнирно-опертыми концами при длине :

Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).


Рис.3. Расчетная схема с жесткозакреплеными торцами.

Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :

Полученные выражения можно объединить с формулой для критической силы основного случая и записать:

здесь — так называемый коэффициент длины, равный:

Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:

Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом

Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).

На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.

Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).

В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов. Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.

Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию. Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10—20) уменьшение свободной длины стержня.

Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д. При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира. Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.

Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.

Задача определения критической силы была впервые поставлена и решена математиком Л.Эйлером*, в дальнейшем она была обобщена на другие случаи концевых закреплений стержня.

Эта формула имеет вид:

где Е – модуль упругости первого рода материала стержня;

I min – минимальный главный центральный момент инерции поперечного сечения стержня;

l – длина стержня;

m - коэффициент приведения длины стержня, зависящий от способа закрепления его концов;

m l – приведенная длина стержня.

На рис. 8.2 показаны наиболее распространенные способы закрепления концов сжатого стержня (штриховыми линиями изображены примерные формы упругих линий стержней при нагрузках, больших критических):

1) оба конца стержня закреплены шарнирно - m = 1 (рис. 8.2,а);

2) один конец жестко защемлен, а другой свободен - m = 2 (рис. 8.2,б);

3) оба конца жестко защемлены, но могут сближаться - m = 0,5 (рис. 8.2,в); 4) один конец стержня закреплен жестко, а другой – шарнирно - m = 0,7 (рис. 8.2,г).

m = 0,7
m = 0,5
m = 2
m = 1
F
F
F
а)
б)
в)
г)
Рис. 8.2
F

Формула Эйлера справедлива лишь при условии, что потеря устойчивости происходит в пределах упругих деформаций стержня, т.е. в пределах действия закона Гука.

Если обе части формулы Эйлера (8.3) разделить на площадь поперечного сечения стержня А, то получим так называемое критическое напряжение s кр , т.е. то напряжение, которое возникает в сечении стержня под действием критической силы F kp . При этом критическое напряжение не должно превышать предела пропорциональности:

где i min – минимальный радиус инерции.

Момент инерции берется минимальный потому, что стержень стремится изогнуться в плоскости наименьшей жесткости.

Разделим числитель и знаменатель формулы (8.4) на минимальный момент инерции I min , представленный формулой (8.5):

где - безразмерная величина называемая гибкостью стержня.

Условие применимости формулы Эйлера удобно выразить через гибкость стержня. Выразим из неравенства (8.6) значение l:

Правую часть этого неравенства обозначают l пред и называют предельной гибкостью стержня из данного материала, т.е.

Таким образом, получим окончательное условие применимости формулы Эйлера - l ³ l пред. Формула Эйлера применима, когда гибкость стержня не меньше предельной гибкости .

Так, например, для стали Ст.3 (Е = 2*10 5 Мпа; s пц = 200 МПа):

т.е. формула Эйлера применима в этом случае при l ³ 100.

Аналогично можно вычислить предельную гибкость и для других материалов.



В конструкциях нередко встречаются стержни, у которых l < l пред. Расчет таких стержней ведется по эмпирической формуле, выведенной профессором Ф.С.Ясинским* на основании обширного опытного материала:

где a, b, c – коэффициенты, зависящие от свойств материала.

В таблице приведены значения а, b и c для некоторых материалов, а также значения гибкостей, в пределах которых применима формула (8.9).

Таблица 8.1

При гибкости l < l 0 стержни можно рассчитывать на прочность без учета опасности потери устойчивости.

Из формул Эйлера и Ясинского следует, что значение критической силы возрастает с увеличением минимального момента инерции поперечного сечения стержня. Так как устойчивость стержня определяется значением минимального момента инерции его поперечного сечения, то, очевидно, рациональны сечения, у которых главные моменты инерции равны между собой. Стойка, имеющая такое сечение, обладает равноустойчивостью во всех направлениях. Из сечений такого типа следует выбирать такие, которые обладают наибольшим моментом инерции при наименьшей площади (затрате материала). Таким сечением является кольцевое сечение.

На рис. 8.3 представлена диаграмма зависимости критического напряжения в стержне от его гибкости. В зависимости от гибкости стержни условно делят на три категории. Стержни большой гибкости (l ³ l пред) рассчитывают на устойчивость по формуле Эйлера; стержни средней гибкости (l 0 £l £l пред) рассчитывают на устойчивость по формуле Ясинского; стержни малой гибкости (l рассчитывают не на устойчивость, а на прочность.

ДЕТАЛИ МАШИН

«Соединения деталей машин»

В процессе изготовления машины некоторые ее детали соединяют между собой, при этом образуются неразъемные или разъемные соединения.

Неразъемными называют соединения, которые невозможно разобрать без разрушения или повреждения деталей. К ним относятся заклепочные, сварные и клеевые соединения.

Разъемными называют соединения, которые можно разбирать и вновь собирать без повреждения деталей. К разъемным соединениям относятся резьбовые, шпоночные, зубчатые (шлицевые) и другие.

Впервые проблема устойчивости сжатых стержней была поставлена . Эйлер вывел расчетную формулу для критической силы и показал, что ее величина существенно зависит от способа закрепления стержня. Идея метода Эйлера заключается в установлении условий, при которых кроме прямолинейной возможна и смежная (т.е. сколь угодно близкая к исходной) криволинейная форма равновесия стержня при постоянной нагрузке.

Предположим, что шарнирно закрепленный по концам прямой стержень, сжатый силой P = P k , был выведен некоторой горизонтальной силой из состояния прямолинейного равновесия и остался изогнутым после устранения горизонтальной силы (рис. 13.4). Если прогибы стержня малы, то приближенное дифференциальное уравнение его оси будет иметь такой же вид, как и при поперечном изгибе бруса:

Совмещая начало координат с центром нижнего сечения, направим ось у в сторону прогибов стержня, а ось х - по оси стержня.

В теории продольного изгиба принято сжимающую силу считать положительной. Поэтому, определяя изгибающий момент в текущем сечении рассматриваемого стержня, получаем

Но, как следует из рис. 13.4, при выбранном направлении осей у // <0, поэтому знаки левой и правой частей уравнения (17.2) будут одинаковыми, если в правой части сохранить знак минус. Если изменить направление оси у на противоположное, то одновременно изменятся знаки у и у // и знак минус в правой части уравнения (13.2) сохранится.

Следовательно, уравнение упругой линии стержня имеет вид

.

Полагая α 2 =Рк /EI , получаем линейное однородное дифференциальное уравнение

,

общий интеграл которого

Здесь A и B - постоянные интегрирования, определяемые из условий закрепления стержня, так называемых граничных или краевых условий.

Горизонтальное смещение нижнего конца стержня, как видно из рис. 13.4, равно нулю, т. е. при х =0 прогиб у =0. Это условие будет выполнено, если B =0. Следовательно, изогнутая ось стержня является синусоидой

.

Горизонтальное смещение верхнего конца стержня также равно нулю, поэтому

.

Константа A , представляющая собой наибольший прогиб стержня, не может быть равна нулю, так как при A =0 возможна только прямолинейная форма равновесия, а мы ищем условие, при котором возможна и криволинейная форма равновесия. Поэтому должно быть sin α l =0. Отсюда следует, что криволинейные формы равновесия стержня могут существовать, если α l принимает значения π ,2π ,.n π . Величина α l не может быть равна нулю, так как это решение соответствует случаю

Приравнивая α l = n π и подставляя

получаем

.

Выражение (13.5) называется формулой Эйлера . По ней можно вычислить критическую силу Рк при выпучивании стержня в одной из двух главных его плоскостей, так как только при этом условии справедливо уравнение (13.2), а следовательно и формула (13.5).

Выпучивание стержня происходит в сторону наименьшей жесткости, если нет специальных устройств, препятствующих изгибу стержня в этом направлении. Поэтому в формулу Эйлера надо подставлять I min - меньшей из главных центральных моментов инерции поперечного сечения стержня.

Величина наибольшего прогиба стержня A в приведенном решении остается неопределенной, она принята произвольной, но предполагается малой.

Величина критической силы, определяемая формулой (13.5), зависит от коэффициента n . Выясним геометрический смысл этого коэффициента.

Выше мы установили, что изогнутая ось стержня является синусоидой, уравнение которой после подстановки α =π n /l в выражение (13.4) принимает вид

.

Синусоиды для n =1, n =2 изображены на рис. 13.5. Нетрудно заметить, что величина n представляет собой число полуволн синусоиды, по которой изогнется стержень. Очевидно, стержень всегда изогнется по наименьшему числу полуволн, допускаемому его опорными устройствами, так как согласно (13.5) наименьшему n соответствует наименьшая критическая сила. Только эта первая критическая сила и имеет реальный физический смысл.

Например, стержень с шарнирно опертыми концами изогнется, как только будет достигнуто наименьшее значение критической силы, соответствующее n =1, так как опорные устройства этого стержня допускают изгиб его по одной полуволне синусоиды. Критические силы, соответствующие n =2, n =3, и более, могут быть достигнуты только при наличии промежуточных опор (рис. 13.6). Для стержня с шарнирными концевыми опорами без промежуточных закреплений реальный смысл имеет первая критическая сила

.

Формула (13.5), как следует из ее вывода, справедлива не только для стержня с шарнирно закрепленными концами, но и для любого стержня, который изогнется при выпучивании по целому числу полуволн. Применим эту формулу, например, при определении критической силы для стержня, опорные устройства которого допускают только продольные смещения его концов (стойка с заделанными концами). Как видно из рисунка 13.7, число полуволн изогнутой оси в этом случае n =2 и, следовательно, критическая сила для стержня при данных опорных устройствах

.

Предположим, что стойка с одним защемленным и другим свободным концом (рис. 13.8) сжата силой Р .

Если сила P = P k , то кроме прямолинейной может существовать также и криволинейная форма равновесия стойки (пунктир на рис. 13.8).

Дифференциальное уравнение изогнутой оси стойки в изображенной на рис. 13.8 системе координатных осей имеет прежний вид.

Общее решение этого уравнения:

Подчиняя это решение очевидным граничным условиям: y =0 при x =0 и y / =0 при x = l , получаем B =0, A α cos α l = 0.

Мы предположили, что стойка изогнута, поэтому величина A не может быть равна нулю. Следовательно, cos α l = 0. Наименьший отличный от нуля, корень этого уравнения α l = π /2 определяет первую критическую силу

,

которой соответствует изгиб стержня по синусоиде

.

Значениям α l =3π /2, α l =5π /2 и т.д, как было показано выше, соответствуют большие величины P k и более сложные формы изогнутой оси стойки, которые могут практически существовать лишь при наличии промежуточных опор.

В качестве второго примера рассмотрим стойку с одним защемленным и вторым шарнирно опертым концом (рис. 13.9). Вследствие искривления оси стержня при P = P k со стороны шарнирной опоры возникает горизонтальная реактивная сила R . Поэтому изгибающий момент в текущем сечении стержня

.α :

Наименьший корень этого уравнения определяет первую критическую силу. Это уравнение решается методом подбора. Нетрудно поверить, что наименьший, отличный от нуля, корень этого уравнения α l = 4.493=1.43 π .

Принимая α l = 1.43 π , получаем следующее выражение для критической силы:

Здесь μ =1/n - величина, обратная числу полуволн n синусоиды, по которой изогнется стержень. Постоянная μ называется коэффициентом приведения длины, а произведение μ l - приведенной длиной стержня. Приведенная длина есть длина полуволны синусоиды, по которой изгибается этот стержень.

Случай шарнирного закрепления концов стержня называется основным. Из сказанного выше следует, что критическая сила для любого случая закрепления стержня может быть вычислена по формуле для основного случая при замене в ней действительной длины стержня его приведенной длиной μ l .

Коэффициенты приведения μ для некоторых стоек даны на рис. 17.10.

Иркутский государственный университет путей сообщения

Лабораторная работа № 16

по дисциплине«Сопротивление материалов»

ОПЫТНОЕ ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ СИЛ

ПРИ ПРОДОЛЬНОМ ИЗГИБЕ

Кафедра ПМ

Лабораторная работа № 16

Опытное определение критических сил при продольном изгибе

Цель работы: исследование явления потери устойчивости сжатого стального стержня в упругой

стадии. Экспериментальное определение значений критических нагрузок сжатых

стержней при различных способах закрепления и сравнение их с теоретическими

значениями.

Общие положения

Сжатые стержни недостаточно проверять на прочность по известному условию:

,

где [σ] – допускаемое напряжение для материала стержня, P – сжимающая сила, F – площадь поперечного сечения.

В практической деятельности инженеры имеют дело с подвергающимися сжатию гибкими стержнями, тонкими сжатыми пластинами, тонкостенными конструкциями, выход из строя которых вызывается ен потерей несущей способности, а потерей устойчивости.

Под потерей устойчивости понимается потеря первоначальной формы равновесия.

В сопротивлении материалов рассматривается устойчивость элементов конструкций, работа­ющих на сжатие.



Рассмотрим длинный тонкий стержень (рис. 1), нагруженный осевой сжимающей силой P .

P < P кр P > P кр

Рис. 1. Стержень, нагруженный осевой сжимающей силой P .

При малых значениях силы F стер­жень сжимается, оставаясь прямолинейным. Причем, если стержень отклонить от этого положения небольшой поперечной нагрузкой, то он изогнется, но при снятии ее стержень возвращается в прямолинейное состояние. Это значит, что при данной силе P прямолинейная форма равновесия стержня устойчива.

Если продолжить увеличивать сжимающую силу P , то при неко­тором ее значении прямолинейная форма равновесия становит­ся неустойчивой и возникает новая форма равновесия стержня - криволинейная (рис. 1, б). Вследствие изгиба стержня в его сече­ниях появится изгибающий момент, который вызовет дополнитель­ные напряжения, и стержень может внезапно разрушиться.

Искривление длинного стержня, сжимаемого продольной силой, называется продольным изгибом .

Наибольшее значение сжимающей силы, при котором прямоли­нейная форма равновесия стержня устойчива, называется критичес­ким - P кр .

При достижении критической нагрузки происходит резкое каче­ственное изменение первоначальной формы равновесия, что ведет к выходу конструкции из строя. Поэтому критическая сила рассмат­ривается как разрушающая нагрузка.

Формулы Эйлера и Ясинского

Задачу определения критической силы сжатого стержня впер­вые решил член Петербургской академии наук Л. Эйлер в 1744 г. Формула Эйлера имеет вид

(1)

где Е модуль упругости материала стержня; J min - наименьший момент инерции поперечного сечения стержня (поскольку искривление стержня при потере устойчивости происходит в плоскости наименьшей жесткости, т. е. поперечные сечения стержня повора­чиваются вокруг оси, относительно которой момент инерции ми­нимален, т.е. либо вокруг оси x , либо вокруг оси y );

(μ·l ) – приведенная длина стержня, это произведение длины стержня l на коэффициент μ, зависящий от способов закреп­ления концов стержня.

Коэффициент μ называют коэффициентом приведения длины ;его значение для наиболее часто встречающихся случаев закрепления концов стержня приведены на рис. 2:

а - оба конца стержня закреплены шарнирно и могут сближаться;

б - один конец жестко защемлен, другой свободен;

в - один конец закреплен шарнирно, второй имеет «поперечно-плавающую заделку»;

г - один конец жестко защемлен, второй имеет «поперечно-плавающую заделку»;

д - один конец заделан жестко, на другом шарнирно-подвижная опора;

е - оба конца жестко защемлены, но могут сближаться.

Из этих примеров видно, что коэффициент μ представляет со­бой величину, обратную числу полуволн упругой линии стержня при потере устойчивости.

Рис. 2. Коэффициент μ для наиболее часто

встречающихся случаев закрепления концов стержня.

Нормальное напряжение в поперечном сечении сжатого стержня, соответствующее критическому значению сжимающей силы, также называется критическим.

Определим его исходя из формулы Эйлера:

(2)

Геометрическую характеристику сечения i min , определяемую по формуле

называют радиусом инерции сечения (относительно оси с J min ). Для прямоугольного сечения

С учетом (3) формула (2) примет вид:

(4)

Отношение приведенной длины стержня к минимальному ра­диусу инерции его поперечного сечения по предложению профес­сора Санкт-Петербургского института инженеров путей сообще­ния Ф.С. Ясинского (1856-1899) называют гибкостью стержня и обозначают буквой λ :

В этой безразмерной величине одновременно отражаются такие параметры: длина стержня, способ его закрепления и характеристи­ка поперечного сечения.

Окончательно, подставив (5) в формулу (4), получим

При выводе формулы Эйлера предполагалось, что материал стер­жня упруг и следует закону Гука. Следовательно, формулу Эйлера можно применять только при напряжениях, меньших предела про­порциональности σ пц , т. е. когда

Этим условием определяется предел применимости формулы Эйлера:

Величину, стоящую в правой части этого неравенства, называют предельной гибкостью :

ее значение зависит от физико-механических свойств материала стержня.

Для низкоуглеродистой стали Ст. 3, у которой σ пц = 200 МПа, Е = 2· 10 5 МПа:

Аналогично можно вычислить значение предельной гибкости для других материалов: для чугуна λ пред = 80, для сосны λ пред = 110.

Таким образом, формула Эйлера применима для стержней, гиб­кость которых больше или равна предельной гибкости , т. е.

λ λ пред

Понимать это надо так: если гибкость стержня больше предельной гибкости, то критическую силу надо определять по формуле Эйлера.

При λ < λ пред формула Эйлера для стержней неприменима. В этих случаях, когда гибкость стержней меньше предельной, при расчетах пользуются эмпирической формулой Ясинского :

σ кр = a λ , (7)

где а и b - определяемые опытным путем коэффициенты, по­стоянные для данного материала; они имеют размерность напря­жения.

При некотором значении гибкости λ о напряжение σ кр , вычис­ленное по формуле (7), становится равным предельному напря­жению при сжатии, т. е. пределу текучести σ т для пластичных мате­риалов или пределу прочности при сжатии σ вс – для хрупких материалов. Стер­жни малой гибкости (λ < λ о )рассчитывают не на устойчивость, а на прочность при простом сжатии.

Таким образом, в зависимости от гибкости расчет сжатых стер­жней на устойчивость производится различно.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.