Аналитические модели систем массового обслуживания. Построение имитационных моделей. Основные понятия имитационного моделирования

Московский государственный технический университет

имени Н.Э. Баумана (Калужский филиал)

Кафедра высшей математики

Курсовая работа

по курсу «Исследование операций»

Имитационное моделирование системы массового обслуживания

Задание на работу: Составить имитационную модель и рассчитать показатели эффективности системы массового обслуживания (СМО) со следующими характеристиками:

Число каналов обслуживания n; максимальная длина очереди т;

Поток поступающих в систему заявок простейший со средней интенсивностью λ и показательным законом распределения времени между поступлением заявок;

Поток обслуживаемых в системе заявок простейший со средней интенсивностью µ и показательным законом распределения времени обслуживания.

Сравнить найденные значения показателей с результатами. полученными путем численного решения уравнении Колмогорова для вероятностей состояний системы. Значения параметров СМО приведены в таблице.


Введение

Глава 1. Основные характеристики CМО и показатели их эффективности

1.1 Понятие марковского случайного процесса

1.2 Потоки событий

1.3 Уравнения Колмогорова

1.4 Финальные вероятности и граф состояний СМО

1.5 Показатели эффективности СМО

1.6 Основные понятия имитационного моделирования

1.7 Построение имитационных моделей

Глава 2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

2.2 Расчет показатели эффективности системы по финальным вероятностям

Глава 3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

3.2 Блок-схема программы

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Заключение

Литература

Приложение 1

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО).

Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

В качестве показателей эффективности СМО используются:

Абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени;

Относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой;

Вероятность отказа обслуживания заявки (

);

Среднее число занятых каналов (k);

Среднее число заявок в СМО (

);

Среднее время пребывания заявки в системе (

);

Среднее число заявок в очереди (

);

Среднее время пребывания заявки в очереди (

);

Среднее число заявок, обслуживаемых в единицу времени;

Среднее время ожидания обслуживания;

Вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.


Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния

можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени

вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

1.2 Потоки событий

Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная:

.

Поток событий называется ординарным, если вероятность попадания на малый участок времени

двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени

За последние десятилетия в самых разных областях народного хозяйства возникла необходимость решения вероятностных задач, связанных с работой систем массового обслуживания. Примерами таких систем служат телефонные станции, ремонтные мастерские, торговые предприятия, билетные кассы и т.д. работа любой системы массового обслуживания состоит в обслуживании поступающего в нее потока требований (вызовы абонентов, при ход покупателей в магазин, требования на выполнение работы в мастерской и т. д.).
Математическая дисциплина, изучающая модели реальных систем массового обслуживания, получила название теории массового обслуживания. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что требование будет обслужено; математического ожидания числа обслуженных требований и т. д.) от входных показателей (количество приборов в системе, параметров входящего потока требований и т. д.) установить такие зависимости в формульном виде можно только для простых систем массового обслуживания. Изучение же реальных систем проводится путем имитации, или моделирования их работы на ЭВМ с привлечением метода статистических испытаний.
Система массового обслуживания считается заданной, если определены:
1) входящий поток требований, или, иначе говоря, закон распределения, характеризующий моменты времени поступления требований в систему. Первопричину требований называют источником. В дальнейшем условимся считать, что источник располагает неограниченным числом требований и что требования однородны, т. е. различаются только моментами появления в системе;
2) система обслуживания, состоящая из накопителя и узла обслуживания. Последний представляет собой одно или несколько обслуживающих устройств, которые в дальнейшем будем называть приборами. Каждое требование должно поступить на один из приборов, чтобы пройти обслуживание. Может оказаться, что требованиям придется ожидать, пока приборы освободятся. В этом случае требования находятся в накопителе, образуя одну или несколько очередей. Положим, что переход требования из накопителя в узел обслуживания происходит мгновенно;
3) время обслуживания требования каждым прибором, которое является случайной величиной и характеризуется некоторым законом распределения;
4) дисциплина ожидания, т. е. совокупность правил, регламентирующих количество требований, находящихся в один и тот же момент времени в системе. Система, в которой поступившее требование получает отказ, когда все приборы заняты, называется системой без ожидания. Если требование, заставшее все приборы занятыми, становится в очередь и ожидает до тех пор,
пока освободиться один из приборов, то такая система называется чистой системой с ожиданием. Система, в которой требование, заставшее все приборы занятыми, становится в очередь только в том случае, когда число требований, находящихся в системе, не превышает определенного уровня (в противном случае происходит потеря требования), называется смешанной системой обслуживания;
5) дисциплина обслуживания, т. е. совокупность правил, в соответствии с которыми требование выбирается из очереди для обслуживания. Наиболее часто на практике используются следующие правила:
- заявки принимаются к обслуживанию в порядке очереди;
- заявки принимаются к обслуживанию по минимальному времени получения отказа;
- заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями;
6) дисциплина очереди, т.е. совокупность правил, в соответствии с которыми требование отдает предпочтение той или иной очереди (если их не сколько) и располагается в выбранной очереди. Например, поступившее требование может занять место в самой короткой очереди; в этой очереди оно может расположиться последним (такая очередь называется упорядоченной), а может пойти на обслуживание вне очереди. Возможны и другие варианты.

Имитационное моделирование систем массового обслуживания

Модель - это любой образ, аналог, мысленный или установленный, изображение, описание, схема, чертеж, и т. п. какого либо объекта, процесса или явления, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.
Моделирование - это исследование какого-либо объекта или системы объектов путем построения и изучения их моделей. А также - это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.
Модель является средством для изучения сложных систем.
В общем случае сложная система представляется как многоуровневая конструкция из взаимодействующих элементов, объединяемых в подсистемы различных уровней. К сложным системам, в т.ч., относятся информационные системы. Проектирование таких сложных систем осуществляется в два этапа.

1 Внешнее проектирование

На этом этапе проводят выбор структуры системы, основных ее эле ментов, организация взаимодействия между элементами, учет воздействия внешней среды, оценка показателей эффективности системы.

2 Внутреннее проектирование - проектирование отдельных элементов
системы

Типичным методом исследования сложных систем на первом этапе является моделирование их на ЭВМ.
В результате моделирования получаются зависимости, характеризующие влияние структуры и параметров системы на ее эффективность, надежность и другие свойства. Эти зависимости используются для получения оптимальной структуры и параметров системы.
Модель, сформулированная на языке математики с использованием математических методов называется математической моделью.
Для имитационного моделирования характерно воспроизведение явлений, описываемых математической моделью, с сохранением их логической структуры, последовательности чередования во времени. Для оценки искомых величин может быть использована любая подходящая информация, циркулирующая в модели, если только она доступна регистрации и последующей обработке.
Искомые величины при исследовании процессов методом имитационного моделирования обычно определяют как средние значения по данным большого числа реализаций процесса. Если число реализаций N, используемых для оценки искомых величин, достаточно велико, то в силу закона больших чисел получаемые оценки приобретают статистическую устойчивость и с достаточной для практики точностью могут быть приняты в качестве приближенных значений искомых величин.
Сущность метода имитационного моделирования применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы,
при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также моделировать процессы функционирования обслуживающих систем. Эти алгоритмы используются для много кратного воспроизведения реализации случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состоянии процесса подвергается статистической обработке для оценки величин, являющихся показателями качества обслуживания

3 Формирование реализаций случайного потока заявок

При исследовании сложных систем методом имитационного моделирования существенное внимание уделяется учету случайных факторов.
В качестве математических схем, используемых для формализации действия этих факторов, используются случайные события, случайные величины и случайные процессы (функции). Формирование на ЭВМ реализаций случайных объектов любой природы сводится к выработке и преобразованию случайных чисел. Рассмотрим способ получения возможных значений случайных величин с заданным законом распределения. Для формирования возможных значений случайных величин с заданным законом распределения исходным материалом служат случайные величины, имеющие равномерное распределение в интервале (0, 1). Другими словами, возможные значения xi случайной величины £, имеющей равномерное распределение в интервале (0, 1), могут быть преобразованы в возможные значения yi случайной величины г), закон распределения которой задан. Способ преобразования состоит в том, что из равномерно распределенной совокупности отбираются случайные числа, удовлетворяющие некоторому условию таким образом, чтобы отобранные числа подчинялись заданному закону распределения.
Предположим, что необходимо получить последовательность случайных чисел yi , имеющих функцию плотности 1^(у). Если область определения функции f^y) не ограничена с одной или обеих сторон, необходимо перейти к соответствующему усеченному распределению. Пусть область возможных значений для усеченного распределения равна (a, b).
От случайной величины г), соответствующей функции плотности f ^ y), перейдем к f.
Случайная величина Ъ, будет иметь область возможных значений (0, 1) и функцию плотности f ^(z), задаваемую выражением.
Пусть максимальное значение f^(z) равно f m . Зададим равномерные распределения в интервалах (0, 1) случайных чисел x 2 i-1 и x 2 i. Процедура по лучения последовательности yi случайных чисел, имеющих функцию плотности ^(у), сводится к следующему:
1) из исходной совокупности выбираются пары случайных чисел x2i-1,
2) для этих чисел проверяется справедливость неравенства
х 21 <-- ^[а + (Ъ-а)х 2М ] (3)
m
3) если неравенство (3) выполнено, то очередное число yi определяется из соотношения
yi =a + (b-а)х 21 (4)
При моделировании процессов обслуживания возникает необходимость формирования реализаций случайного потока однородных событий (заявок). Каждое событие потока характеризуется моментом времени tj, в который оно наступает. Чтобы описать случайный поток однородных событий как случайный процесс, достаточно задать закон распределения, характеризующий последовательность случайных величин tj. Для того, чтобы получить реализацию потока однородных событий t1, t2..., tk, необходимо сформировать реализацию z b z 2 ,...,zk k-мерного случайного вектора ££2,..., Sk и вычислить значения ti в соответствии со следующими соотношениями:
t 2 =
Пусть стационарный ординарный поток с ограниченным последействием задан функцией плотности f(z). В соответствии с формулой Пальма (6) найдем функцию плотности f1(z1) для первого интервала z1.
1- Jf (u) du
Теперь можно сформировать случайное число z b как было показано выше, соответствующее функции плотности f1(z1), и получить момент появления первой заявки t1 = z1 . Далее формируем ряд случайных чисел, соответствующих функции плотности f(z), и при помощи соотношения (4) вычисляем значения величин t2, t3 ,.., tk.
4 Обработка результатов моделирования
При реализации моделирующих алгоритмов на ЭВМ вырабатывается информация о состояниях исследуемой системы. Эта информация является исходным материалом для определения приближенных значений искомых величин, или, как принято говорить, оценок для искомых величин.
Оценка вероятности события А вычисляется по формуле
p(A) = mN . (7)
Оценка среднего значения x случайной величины Ъ, вычисляется по
формуле
_ 1 n
k =1
Оценка S 2 для дисперсии случайной величины ^ вычисляется по формуле
1 N 1 (N Л 2
S 2 =1 YA xk 2-5> J (9)
Оценка корреляционного момента К^ для случайных величин Ъ, и ц с возможными значениями x k и y k соответственно вычисляется по формуле
1 N 1 NN
У> [ Ух

5 Пример моделирования СМО
Рассмотрим следующую систему:
1 Требования поступают в случайные моменты времени, при этом
промежуток времени Q между любыми двумя последовательными требованиями имеет показательный закон с параметром i, т. е. функция распределения имеет вид
>0. (11) Система обслуживания состоит из s одинаковых, пронумерованных приборов.
3 Время Т о бсл - случайная величина с равномерным законом распределения на отрезке .
4 Система без ожидания, т.е. требование, заставшее все приборы занятыми, покидает систему.
5 Дисциплина обслуживания такова: если в момент поступления k - го требования первый прибор свободен, то он приступает к обслуживанию требования; если этот прибор занят, а второй свободен, то требование обслуживается вторым прибором, и т.д.
Требуется оценить математические ожидания числа требований, обслуженных системой за время Т и получивших отказ.
За начальный момент расчета выберем момент поступления первого требования Т1=0. Введем следующие обозначения: Тk- момент поступления k-го требования; ti - момент окончания обслуживания требования i-м прибором, i=1, 2, 3, ...,s.
Предположим, что в момент T 1 все приборы свободны.
Первое требование поступает на прибор 1. Время обслуживания этим прибором имеет равномерное распределение на отрезке . Поэтому конкретное значение tобсл этого времени находим по формуле
(12)
где r- значение случайной величины R , равномерно распределенной на отрезке . Прибор 1 будет занят в течение времени t о бсл. Поэтому момент времени t 1 окончания обслуживания требования прибором 1 следует считать равным: t 1 = Т1+ t о бсл.
Затем следует добавить единицу в счетчик обслуженных требований и перейти к рассмотрению следующего требования.
Предположим, что k требований уже рассмотрено. Определим момент Т k+1 поступления (k+1)-го требования. Для этого найдем значение т промежутка времени между последовательными требованиями. Так как этот про межуток имеет показательный закон, то
12
х = - In r (13)
| Ll
где r -очередное значение случайной величины R . Тогда момент посту пления (k+1)-го требования: Т k +1 = Тк+ Т.
Свободен ли в этот момент первый прибор? Для ответа на этот вопрос необходимо проверить условие ti < Tk + i - Если это условие выполнено, то к моменту Т k +1 первый прибор освободился и может обслуживать требование. В этом случае t 1 заменяем на (Т k +1 + t обсл), добавляем единицу в счетчик об служенных требований и переходим к следующему требованию. Если t 1>Т k +1, то первый прибор в момент Т k +1 занят. В этом случае проверяем, свободен ли второй прибор. Если условие i 2< Tk + i выполнено, заменяем t2 на (Т k +1+ t о бсл), добавляем единицу в счетчик обслуженных требований и переходим к следующему требованию. Если t 2>Т k +1, то проверяем условие 1з<Тк+1 и т. д. Eсли при всех i от 1 до s имеет ti >Т k +1, то в момент Т k +1 все приборы заняты. В этом случае прибавляем единицу в счетчик отказов и переходим к рассмотрению следующего требования. Каждый раз, вычислив Т k +1, надо проверить еще ус ловие окончания реализации: Tk + i < T . Если это условие выполнено, то одна реализация процесса функционирования системы воспроизведена и испыта ние заканчивается. В счетчике обслуженных требований и в счетчике отказов находятся числа n обсл и n отк.
Повторив такое испытание n раз (с использованием различных r) и усреднив результаты опытов, определим оценки математических ожиданий числа обслуженных требований и числа требований, получивших отказ:
(14)
(Ji
n j =1
где (n обсл) j и (n отк) j - значения величин n обсл и n отк в j -ом опыте.
13

Список использованных источников
1 Емельянов А.А. Имитационное моделирование экономических процессов [Текст]: Учеб. пособие для вузов / А.А. Емельянов, Е.А. Власова, Р.В. Дума. - М. : Финансы и статистика, 2002. - 368с.
2 Бусленко, Н.П. Моделирование сложных систем [Текст]/ Н.П. Бусленко.- М. : Наука, 1978. - 399с.
3 Советов Б.Я. Моделирование систем [Текст]: Учеб. для вузов / Б.Я. Сове тов, С.А. Яковлев. -М. : Высш. школа, 1985. - 271 с.
4 Советов Б.Я. Моделирование систем [Текст]: Лабораторный практи кум: Учеб. пособие для вузов по специальности: "Автом. сист. обработ. инф. и управл." / Б.Я. Советов, С.А. Яковлев. -М. : Высш. шк., 1989. - 80 с.
5 Максимей И.В. Имитационное моделирование на ЭВМ [Текст]/ Максимей, И.В. -М: РАДИО И СВЯЗЬ, 1988. - 231с.
6 Вентцель Е.С. Теория вероятностей [ Текст ] : учеб. для вузов / Е.С. Вент цель.- М. : Высш. шк., 2001. - 575 с.
7 Гмурман, В.Е. Теория вероятностей и математическая статисти ка [ Текст ] : учеб. пособие / В.Е. Гмурман.- М. : Высш. шк., 2001. - 479 с.
Приложение А
(обязательное)
Примерные темы расчетно-графических работ
1 На травмопункте работает один врач. Длительность лечения больного
и промежутки времени между поступлениями больных - случайные величи ны, распределенные по пуассоновскому закону. По тяжести травм больные делятся на три категории, поступление больного любой категории - случай ное событие с равновероятным распределением. Врач вначале занимается больными с максимально тяжелыми травмами (в порядке их поступления), затем, если таковых нет, больными средней тяжести, и лишь затем - больны ми с легкими травмами. Смоделировать процесс и оценить средние времена ожидания в очереди больных каждой из категорий.
2 В городском автохозяйстве две ремонтные зоны. Первая обслуживает ремонты краткой и средней продолжительности, вторая - средней и долгой. По мере поломок в автохозяйство доставляют транспорт; промежуток време ни между доставками - случайная пуассоновская величина. Продолжительности ремонта - случайная величина с нормальным законом распределения. Смоделировать описанную систему. Оценить средние времена ожидания в очереди транспорта, требующие соответственно краткосрочного, среднесрочного и длительного ремонта.
3 Мини-маркет с одним контролером - кассиром обслуживает покупа телей, входящий поток которых подчиняется закону Пуассона с параметром 20 покупателей/час. Провести моделирование описанного процесса и определить вероятность простоя контролера - кассира среднюю длину очереди, среднее число покупателей в мини-маркете, среднее время ожидания обслуживания, среднее время пребывания покупателей в мини-маркете и дайте оценку его работы.
4 На АТС поступают заявки на междугородние переговоры. Поток зая вок является пуассоновским. В среднем за 1 час поступает 13 заявок. Найдите среднее число заявок, поступающих за сутки, среднее время между появлением заявок. На телефонной станции появляются сбои в работе, если за полчаса на нее поступит более 50 заявок. Найдите вероятность сбоя станции.
5 На станцию технического обслуживания поступает простейший по
ток заявок с интенсивностью 1 автомобиль за 2 ч. Во дворе в очереди может находиться не более 3 машин. Среднее время ремонта - 2 часа. Дайте оценку работы СМО и разработайте рекомендации по улучшению обслуживания.
6 Одна ткачиха обслуживает группу станков, осуществляя по мере необходимости краткосрочное вмешательство, длительность которого - случайная величина. Смоделировать описанную ситуацию. Какова вероятность простоя сразу двух станков. Как велико среднее время простоя одного станка.
7 На междугородней телефонной станции две телефонистки обслуживают общую очередь заказов. Очередной заказ обслуживает та телефонистка, которая первой освободилась. Если обе в момент поступления заказа заняты, звонок аннулируется. Смоделировать процесс, считая входные потоки пуассоновскими.
8 На травмопункте работают два врача. Длительность лечения больно
го и промежутки времени между поступлениями больных - случайные вели чины, распределенные по пуассоновскому закону. По тяжести травм больные делятся на три категории, поступление больного любой категории - случай ное событие с равновероятным распределением. Врач вначале занимается больными с максимально тяжелыми травмами (в порядке их поступления), затем, если таковых нет, больными средней тяжести, и лишь затем - больны ми с легкими травмами. Смоделировать процесс и оценить средние времена ожидания в очереди больных каждой из категорий.
9 На междугородней телефонной станции две телефонистки обслужи
вают общую очередь заказов. Очередной заказ обслуживает та телефонистка,
которая первой освободилась. Если обе в момент поступления заказа заняты, то формируется очередь. Смоделировать процесс, считая входные потоки пу- ассоновскими.
10 В системе передачи данных осуществляется обмен пакетами данных между узлами A и B по дуплексному каналу связи. Пакеты поступают в пункты системы от абонентов с интервалами времени между ними 10 ± 3 мс. Передача пакета занимает 10 мс. В пунктах имеются буферные регистры, ко торые могут хранить два пакета, включая передаваемый. В случае прихода пакета в момент занятости регистров пунктам системы предоставляется вы ход на спутниковую полудуплексную линию связи, которая осуществляет передачу пакетов данных за 10 ± 5 мс. При занятости спутниковой линии па кет получает отказ. Смоделировать обмен информацией в системе передачи данных в течение 1 мин. Определить частоту вызовов спутниковой линии и ее загрузку. В случае возможности отказов определить необходимый для безотказной работы системы объем буферных регистров.
11 Пусть на телефонной станции с одним входом используется обычная система: если абонент занят, то очередь не формируется и надо звонить сно ва. Смоделировать ситуацию: три абонента пытаются дозвониться до одного и того же владельца номера и в случае успеха разговаривают с ним некоторое (случайное по длительности) время. Какова вероятность того, что некто, пы тающийся дозвониться, не сможет это сделать за определенное время Т.
12 Торговая фирма планирует выполнять заказы на приобретение това ров по телефону, для чего необходимо установить соответствующую мини- АТС с несколькими телефонными аппаратами. Если заказ поступает, когда все линии заняты, то клиент получает отказ. Если в момент поступления за явки хотя бы одна линия свободна, то производится переключение на эту линию и оформляется заказ. Интенсивность входящего потока заявок составляет 30 заказов в час. Длительность оформления заявки в среднем равна 5 мин. Определите оптимальное число каналов обслуживания, чтобы обеспечить условие стационарной работы СМО.
13 В магазине самообслуживание 6 контролеров - кассиров. Входящий поток покупателей подчиняется закону Пуассона с интенсивностью 120 чел/час. Один кассир может обслужить 40 человек в час. Определите вероят ность простоя кассира, среднее число покупателей в очереди, среднее время ожидания, среднее число занятых кассиров. Дайте оценку работы СМО.
14 В магазин самообслуживания поступает пуассоновский поток с ин тенсивностью 200 покупателей в час. В течение дня их обслуживают 3 кон тролера-кассира с интенсивностью 90 покупателей в час. Интенсивность входного потока покупателей в часы пик возрастает до величины 400 поку пателей в час, а в часы спада достигает величины 100 покупателей в час. Определите вероятность образования очереди в магазине и среднюю длину очереди в течение дня, а также необходимое число контролеров-кассиров в часы пик и часы спада, обеспечивающие такую же длину очереди и вероятность ее образования, как и в номинальном режиме.
15 Среднее число покупателей, поступающих на узел расчета в магазин самообслуживания 100 чел/час. Кассир может обслужить 60 человек в час. Смоделируйте процесс и определите, какое число кассиров необходимо для того, чтобы вероятность появления очереди не превысила 0.6.
16 Провести моделирование очереди в магазине с одним продавцом при равновероятных законах распределения случайных величин: прихода по купателей и длительности обслуживания (при некотором фиксированном на боре параметров). Получить устойчивые характеристики: средние значения ожидания в очереди покупателем и простой продавца в ожидании прихода покупателей. Оценить их достоверность.
17 Провести моделирование очереди в магазине с одним продавцом при пуассоновских законах распределения случайных величин: прихода по купателей и длительности обслуживания (при некотором фиксированном на боре параметров). Получить устойчивые характеристики: средние значения ожидания в очереди покупателем и простой продавца в ожидании прихода покупателей. Оценить их достоверность.
18 Создайте модель бензоколонки. Найдите показатели качества обслуживания заявок. Определите количество стоек с тем, чтобы очередь не увеличивалась.
19 Среднее число покупателей, поступающих на узел расчета в магазин самообслуживания, 60 человек в час. Кассир может обслужить 35 человек в час. Смоделируйте процесс и определите, какое число кассиров необходимо для того, чтобы вероятность появления очереди не превысила 0.6.
20 Разработайте модель автобусного маршрута с n остановками. Определите показатели эффективности использования СМО.

Классификация, основные понятия, элементы модели, расчет основных характеристик.

При решении задач рациональной организации торговли, бытового обслуживания, складского хозяйства и т.д. весьма полезной бывает интерпретация деятельности производственной структуры как системы массового обслуживания , т.е. системы в которой, с одной стороны, постоянно возникают запросы на выполнение каких-либо работ, а с другой - происходит постоянное удовлетворение этих запросов.

Всякая СМО включает четыре элемента : входящий поток, очередь, обслуживающее устройство, выходящий поток.

Требованием (клиентом, заявкой) в СМО называется каждый отдельный запрос на выполнение какой-либо работы.

Обслуживание - это выполнение работы по удовлетворению поступившего требования. Объект, выполняющий обслуживание требований, называется обслуживающим устройством (прибором) или каналом обслуживания.

Временем обслуживания называется период, в течение которого удовлетворяется требование на обслуживание, т.е. период от начала обслуживания и до его завершения. Период от момента поступления требования в систему и до начала обслуживания называется временем ожидания обслуживания. Время ожидания обслуживания в совокупности с временем обслуживания составляет время пребывания требования в системе.

СМО классифицируются по разным признакам .

1. По числу каналов обслуживания СМО делятся на одноканальные и многоканальные.

2. В зависимости от условий ожидания требованием начала обслуживания различают СМО с потерями (отказами) и СМО с ожиданием.

В СМО с потерями требования , поступившие в момент, когда все приборы заняты обслуживанием, получают отказ, они теряются для данной системы и никакого влияния на дальнейший процесс обслуживания не оказывают. Классическим примером системы с отказами является телефонная станция - требование на соединение получает отказ, если вызываемый абонент занят.

Для системы с отказами основной характеристикой эффективности функционирования является вероятность отказа или средняя доля заявок, оставшихся необслуженными.

В СМО с ожиданием требования , поступившее в момент, когда все приборы заняты обслуживанием, не покидает систему, а становится в очередь и ожидает пока не освободится один из каналов. При освобождении очередного прибора одна из заявок, стоящих в очереди, немедленно принимается на обслуживание.

Для СМО с ожиданием основными характеристиками являются математические ожидания длины очереди и времени ожидания.

Примером системы с ожиданием может служить процесс восстановления телевизоров в ремонтной мастерской.

Встречаются системы, лежащие между указанными двумя группами (смешанные СМО ). Для них характерно наличие некоторых промежуточных условий: ограничениями могут быть ограничения по времени ожидания начала обслуживания, по длине очереди и т.п.



В качестве характеристик эффективности может применяться вероятность отказа как в системах с потерями (или характеристики времени ожидания) и в системах с ожиданием.

3. По дисциплине обслуживания СМО делятся на системы с приоритетом в обслуживании и на системы без приоритета в обслуживании.

Требования могут обслуживаться в порядке их поступления либо случайным образом, либо в зависимости от установленных приоритетов.

4. СМО могут быть однофазными и многофазными.

В однофазных системах требования обслуживаются каналами одного типа (например рабочими одной профессии) без передачи их от одного канала к другому, в многофазных системах такие передачи возможны.

5. По месту нахождения источника требований СМО делятся на разомкнутые (когда источник требования находится вне системы) и замкнутые (когда источник находится в самой системе).

К замкнутым относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на наладку. В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми . Примерами подобных систем могут служить магазины, кассы вокзалов, портов и т.п. Для этих систем поступающий поток требований можно считать неограниченным.

Методы и модели исследования СМО можно условно разбить на аналитические и статистические (имитационного моделирования процессов массового обслуживания).

Аналитические методы позволяют получить характеристики системы как некоторые функции от параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

К сожалению, аналитическому решению поддается лишь довольно ограниченный круг задач теории массового обслуживания. Несмотря на постоянно ведущуюся разработку аналитических методов, во многих реальных случаях аналитическое решение либо невозможно получить, либо итоговые зависимости оказываются настолько сложными, что их анализ становится самостоятельной трудной задачей. Поэтому ради возможности применения аналитических методов решения приходится прибегать к различным упрощающим предположениям, что в некоторой степени компенсируется возможностью применения качественного анализа итоговых зависимостей (при этом, разумеется, необходимо, чтобы принятые допущения не искажали реальной картины процесса).

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких задач массового обслуживания, в которых поток требований является простейшим (пуассоновским ).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, то есть вероятность поступления за время t, равное k требований задается формулой:

где λ - параметр потока (см. ниже).

Простейший поток обладает тремя основными свойствами: ординарностью, стационарностью и отсутствием последействия.

Ординарность потока означает практическую невозможность одновременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы станков, обслуживаемых бригадой ремонтников, одновременно выйдут из строя несколько станков.

Стационарным называется поток , для которого математическое ожидание числа требований, поступающих в систему в единицу времени (обозначим через λ), не меняется во времени. Таким образом, вероятность поступления в систему определенного количества требований в течение заданного промежутка времени Δt зависит от его величины и не зависит от начала его отсчета на оси времени.

Отсутствие последействия означает, что число требований, поступивших в систему до момента t, не определяет того, сколько требований поступит в систему за время t + Δt.

Например, если на ткацком станке в данный момент произошел обрыв нити, и он устранен ткачихой, то это не определяет того, произойдет новый обрыв на данном станке в следующий момент или нет, тем более это не влияет на вероятность возникновения обрыва на других станках.

Важной характеристикой СМО является время обслуживания требований в системе. Время обслуживания является, как правило, случайной величиной и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории и, особенно в практических приложениях, получил экспоненциальный закон. Для этого закона функция распределения вероятностей имеет вид:

F(t) = 1 – e -μt ,

т.е. вероятность того, что время обслуживания не превосходит некоторой величины t, определяется формулой (1 – e -μt), где μ -параметр экспоненциального закона времени обслуживания требований в системе - величина, обратная среднему времени обслуживания, т.е. .

Рассмотрим аналитические модели СМО с ожиданием (наиболее распространенные СМО, в которых требования, поступившие в момент, когда все обслуживающие единицы заняты, становятся в очередь и обслуживаются по мере освобождения обслуживающих единиц).

Задачи с очередями являются типичными в производственных условиях, например при организации наладочных и ремонтных работ, при многостаночном обслуживании и т.д.

Постановка задачи в общем виде выглядит следующим образом.

Система состоит из n обслуживающих каналов. Каждый из них может одновременно обслуживать только одно требование. В систему поступает простейший (пуассоновский) поток требований с параметром λ. Если в момент поступления очередного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

Время обслуживания каждого требования t об является случайной величиной, которая подчиняется экспоненциальному закону распределения с параметром μ.

Как отмечалось выше, СМО с ожиданием можно разбить на две большие группы: замкнутые и разомкнутые.

Особенности функционирования каждой из этих двух видов систем накладывают свой оттенок на используемый математический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей состояний СМО (формулы Эрланга).

Поскольку система замкнутая, то к постановке задачи следует добавить условие: поток поступающих требований ограничен, т.е. в системе обслуживания одновременно не может находиться больше m требований (m - число обслуживаемых объектов).

В качестве основных критериев, характеризующих качество функционирования рассматриваемой системы, выберем: 1) отношение средней длины очереди к наибольшему числу требований, находящихся одновременно в обслуживающей системе -коэффициент простоя обслуживаемого объекта; 2) отношение среднего числа незанятых обслуживающих каналов к их общему числу - коэффициент простоя обслуживаемого канала.

Рассмотрим расчет необходимых вероятностных характеристик (показателей качества функционирования) замкнутой СМО.

1. Вероятность того, что в системе находится k требований при условии, когда их число не превышает числа обслуживающих аппаратов n:

P k = α k P 0 , (1 ≤ k ≤ n),

где

λ - частота (интенсивность) поступления требований в систему от одного источника;

Средняя продолжительность обслуживания одного требования;

m - наибольшее возможное число требований, находящихся в обслуживающей системе одновременно;

n - число обслуживающих аппаратов;

Р 0 - вероятность того, что все обслуживающие аппараты свободны.

2. Вероятность того, что в системе находится k требований при условии, когда их число больше числа обслуживающих аппаратов:

P k = α k P 0 , (n ≤ k ≤ m),

где

3. Вероятность того, что все обслуживающие аппараты свободны, определяется из условия

следовательно,

4. Среднее число требований, ожидающих начала обслуживания (средняя длина очереди):

5. Коэффициент простоя требования в ожидании обслуживания:

6. Вероятность того, что все обслуживающие аппараты заняты:

7. Среднее число требований, находящихся в обслуживающей системе (обслуживаемых и ожидающих обслуживания):

8. Коэффициент полного простоя требований на обслуживании и в ожидании обслуживания:

9. Среднее время простоя требования в очереди на обслуживание:

10. Среднее число свободных обслуживающих аппаратов:

11. Коэффициент простоя обслуживающих аппаратов:

12. Вероятность того, что число требований, ожидающих обслуживания, больше некоторого числа В (вероятность того, что в очереди на обслуживание находится более В требований):

ВВЕДЕНИЕ

ГЛАВА I. ПОСТАНОВКА ЗАДАЧ МАССОВОГО ОБСЛУЖИВАНИЯ

1.1 Общие понятие теории массового обслуживания

1.2 Моделирование систем массового обслуживания

1.3 Графы состояний СМО

1.4 Случайные процессы

Глава II. УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

2.1 Уравнения Колмогорова

2.2 Процессы «рождения – гибели»

2.3 Экономико-математическая постановка задач массового обслуживания

Глава III. МОДЕЛИ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

3.1 Одноканальная СМО с отказами в обслуживании

3.2 Многоканальная СМО с отказами в обслуживании

3.3 Модель многофазной системы обслуживания туристов

3.4 Одноканальная СМО с ограниченной длиной очереди

3.5 Одноканальная СМО с неограниченной очередью

3.6 Многоканальная СМО с ограниченной длиной очереди

3.7 Многоканальная СМО с неограниченной очередью

3.8 Анализ системы массового обслуживания супермаркета

ЗАКЛЮЧЕНИЕ


Введение

В настоящее время появилось большое количество литературы, посвященной непосредственно теории массового обслуживания, развитию ее математических аспектов, а также различных сфер ее приложения - военной, медицинской, транспортной, торговле, авиации и др.

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. Большой вклад в развитие этой теории внесли российские математики А.Я. Хинчин, Б.В. Гнеденко, А.Н. Колмогоров, Е.С. Вентцель и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.

В коммерческой деятельности применение теории массового обслуживания пока не нашло желаемого распространения.

В основном это связано с трудностью постановки задач, необходимостью глубокого понимания содержания коммерческой деятельности, а также надежного и точного инструментария, позволяющего просчитывать в коммерческой деятельности различные варианты последствий управленческих решений.


Глава I . Постановка задач массового обслуживание

1.1 Общие понятие теории массового обслуживания

Природа массового обслуживания, в различных сферах, весьма тонка и сложна. Коммерческая деятельность связана с выполнением множества операций на этапах движения, например товарной массы из сферы производства в сферу потребления. Такими операциями являются погрузка товаров, перевозка, разгрузка, хранение, обработка, фасовка, реализация. Кроме таких основных операций процесс движения товаров сопровождается большим количеством предварительных, подготовительных, сопутствующих, параллельных и последующих операций с платежными документами, тарой, деньгами, автомашинами, клиентами и т.п.

Для перечисленных фрагментов коммерческой деятельности характерны массовость поступления товаров, денег, посетителей в случайные моменты времени, затем их последовательное обслуживание (удовлетворение требований, запросов, заявок) путем выполнения соответствующих операций, время выполнения которых носит также случайный характер. Все это создает неравномерность в работе, порождает недогрузки, простой и перегрузки в коммерческих операциях. Много неприятностей доставляют очереди, например, посетителей в кафе, столовых, ресторанах, или водителей автомобилей на товарных базах, ожидающих разгрузки, погрузки или оформления документов. В связи с этим возникают задачи анализа существующих вариантов выполнения всей совокупности операций, например, торгового зала супермаркета, ресторана или в цехах производства собственной продукции для целей оценки их работы, выявления слабых звеньев и резервов для разработки в конечном итоге рекомендаций, направленных на увеличение эффективности коммерческой деятельности.

Кроме того, возникают другие задачи, связанные с созданием, организацией и планированием нового экономичного, рационального варианта выполнения множества операций в пределах торгового зала, кондитерского цеха, всех звеньев обслуживания ресторана, кафе, столовой, планового отдела, бухгалтерии, отдела кадров и др.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, например обслуживание продавцами покупателей в магазинах, обслуживание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслуживания, обеспечение телефонных разговоров на телефонной станции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а операции обслуживания выполняются кем-либо или чем-либо, называемыми каналами (узлами) обслуживания. Роль заявок в коммерческой деятельности выполняют товары, посетители, деньги, ревизоры, документы, а роль каналов обслуживания - продавцы, администраторы, повара, кондитеры, официанты, кассиры, товароведы, грузчики, торговое оборудование и др. Важно заметить, что в одном варианте, например, повар в процессе приготовления блюд является каналом обслуживания, а в другом - выступает в роли заявки на обслуживание, например к заведующему производством за получением товара.

Заявки в силу массовости поступления на обслуживание образуют потоки, которые до выполнения операций обслуживания называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки обслуживания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока заявок, очереди, каналов обслуживания и выходящего потока заявок образует простейшую одноканальную систему массового обслуживания - СМО.

Под системой понимается совокупность взаимосвязанных и. целенаправленно взаимодействующих частей (элементов). Примерами таких простейших СМО в коммерческой деятельности являются места приема и обработки товаров, узлы расчета с покупателями в магазинах, кафе, столовых, рабочие места экономист та, бухгалтера, коммерсанта, повара на раздаче и т.д.

Процедура обслуживания считается завершенной, когда заявка на обслуживание покидает систему. Продолжительность интервала времени, требуемого для реализации процедуры обслуживания, зависит в основном от характера запроса заявки на обслуживание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой - от формы организации обслуживания и обслуживающего персонала, что может значительно повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания. Например, овладение кассирами-контролерами работы «слепым» методом на кассовом аппарате позволило увеличить пропускную способность узлов расчета в 1,3 раза и сэкономить время, затрачиваемое на расчеты с покупателями по каждой кассе более чем на 1,5 ч в день. Внедрение единого узла расчета в супермаркете дает ощутимые преимущества покупателю. Так, если при традиционной форме расчетов время обслуживания одного покупателя составляло в среднем 1,5 мин, то при введении единого узла расчета - 67 с. Из них 44 с уходят на оформление покупки в секции и 23 с непосредственно на расчеты за покупки. Если покупатель делает несколько покупок в разных секциях, то потери времени сокращаются при приобретении двух покупок в 1,4 раза, трех - в 1,9, пяти - в 2,9 раза.

Под обслуживанием заявок будем понимать процесс удовлетворения потребности. Обслуживание имеет различный характер по своей природе. Однако, во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства. В некоторых случаях обслуживание производится одним человеком (обслуживание покупателя одним продавцом, в некоторых - группой людей (обслуживание больного врачебной комиссией в поликлинике), а в некоторых случаях - техническими устройствами (продажа газированной воды, бутербродов автоматами). Совокупность средств, которые осуществляют обслуживание заявок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одинаковые заявки, то каналы обслуживания называются однородными. Совокупность однородных каналов обслуживания называется обслуживающей системой.

В систему массового обслуживания поступает большое количество заявок в случайные моменты времени, длительность обслуживания которых также является случайной величиной. Последовательное поступление заявок в систему обслуживания называется входящим потоком заявок, а последовательность заявок, покидающих систему обслуживания,- выходящим потоком.

Основы математического моделирования

социально-экономических процессов

Лекция 3

Тема лекции: «Модели систем массового обслуживания»

1. Модели организационных структур управления (ОСУ).

2. Системы и модели массового обслуживания. Классификация систем массового обслуживания (СМО).

3.Модели СМО. Показатели качества функционирования СМО.

  1. МОДЕЛИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

Многие экономические задачи связаны с системами мас-сового обслуживания (СМО), т. е. с такими системами, в кото-рых, с одной стороны, возникают массовые запросы (требо-вания) на выполнение каких-либо услуг, с другой — проис-ходит удовлетворение этих запросов.

СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания (ТМО).

Методами теории массового обслуживания (ТМО) могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых то- чек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организаций. И задача тео-рии массового обслуживания в данном случае сводится к тому, чтобы установить оптимальное соотношение между числом поступающих на базу требований на обслуживание и числом обслуживающих устройств, при котором суммар-ные расходы на обслуживание и убытки от простоя транс-порта были бы минимальными. Теория массового обслужи-вания может найти применение и при расчете площади складских помещений, при этом складская площадь рас-сматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку — как требование.

Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем. Переход к рынку требует от всех субъектов хозяйствования повышенной надежности и эффективности функционирования производств, гибкости и живучести в ответ на динамичные изменения внешней деловой среды, снижения разновидностей рисков и потерь от запоздалых и некомпетентных управленческих решений.

СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО) ЯВЛЯЮТСЯ МАТЕМАТИЧЕСКИМИ МОДЕЛЯМИ ОРГАНИЗАЦИОННЫХ СТРУКТУР УПРАВЛЕНИЯ (ОСУ).

ОРГАНИЗАЦИОННЫЕ СТРУКТУРЫ УПРАВЛЕНИЯ (ОСУ) призваны оперативно отслеживать колебания рынка и принимать в зависимости от складывающихся ситуаций компетентные управленческие решения.

Поэтому становится понятным то внимание, которое уделяют субъекты рынка (транснациональные корпорации, промышленные предприятия, коммерческие банки, фирмы, организации, малые предприятия и т.п.) выбору эффективно функционирующих организационных структур управления (ОСУ).

Взамен широко распространенных в 90-х годах двадцатого столетия ОСУ предприятий (иерархических, матричных, дуальных, параллельных и др.) сегодня в мире эффективно используются АЛЬТЕРНАТИВНЫЕ ФОРМЫ МНОГОФУНКЦИОНАЛЬНЫХ СТРУКТУР, базирующихся на принципах самоорганизации, адаптации, автономности отдельных подразделений с мягкими связями между ними .

Подобной структурой обладает множество передовых зарубежных фирм, в составе которых насчитывается множество рабочих групп с сетевыми взаимоотношениями между ними. Популярными в последнее время считаются организации, ориентированные на минимизацию потребления ресурсов, имеющие явно выраженную горизонтальную форму с координацией, осуществляемой не по иерархическому признаку, а самими рабочими группами, организованными в сеть.

Альтернативными моделями, противостоящими моделям ОСУ, созданным на базе организационной логики и жесткого регулирования, являются нечеткие структуры без иерархических уровней и структурных подразделений , основанные на координации личной ответственности и профилировании самоуправляемых групп со следующими признаками:

а) наличием относительно независимых рабочих групп с участием представителей различных подразделений, создаваемых для решения определенных проектов и проблем, при широкой свободе действий и автономии в области координации задач и принятия решений;

б) ликвидацией жестких связей между подразделениями ОСУ с введением гибких взаимосвязей.

На аналогичных принципах базируется современная концепция минимизированного по ресурсам производства: на подобных предприятиях в качестве организационных единиц используют рабочие группы с широкими полномочиями и большими возможностями самоуправления с конечной целью, заключающейся в создании разумной гибкой организации труда, опирающейся на самостоятельно действующих исполнителей, а не на синтезированные специалистами рациональные структуры; сотрудниками оцениваются возникающие проблемы, определяются возможности контактов со специалистами внутри и за пределами системы. Самоуправляемый персонал основной упор делает на самоорганизацию, заменяющую собой привнесенную извне (задаваемую сверху) жесткую упорядоченную структуру.

Крайним случаем такого подхода является создание безорганизационной, постоянно «размороженной», структуры со следующими свойствами:

Широкое творческое обсуждение любых обрабатываемых процедур и поступающих извне сигналов без учета шаблонных решений и прошлого опыта;

Автономная работа членов групп с самостоятельной организацией временных взаимосвязей и производственных соглашений между партнерами по мере необходимости для решения возникающих проблем.

Заметим, что чрезмерное увлечение одной системной функцией — гибкостью, при полном игнорировании прочих функций — интеграции, идентификации, учета и контроля, всегда опасно для устойчиво функционирующих систем, так как трудно обеспечить успешную координацию в рамках данной организации без высокой квалификации сотрудников, их способности к обучению и совершенствованию, к установлению эффективных контактов и координации.При подобной форме организации основное внимание должно уделяться созданию условий для максимального использования интеллекта человеческих ресурсов и повышения их квалификации, выделению высококвалифицированных специалистов — системщиков, увязывающих действия членов организации для достижения конечной цели. При этом в сфере системной координации существует вероятность возможных срывов, конфликтов и негативных последствий, так как ориентация на способность персонала к самоорганизации и самокоординации носит слишком общий характер. Хотя высокая компетентность, инициатива и сила воли каждого работника и влияет на жизнеспособность любой децентрализованной организации, но в целом они не могут заменить регулирующей функции целой организационной структуры.

Сегодня в мире интенсивно развивается новое направление синтеза ОСУ как обучающихся систем, характеризующихся следующими характерными особенностями:

а) привлечением высококвалифицированных экспертов-специалистов к процессам восприятия и накопления информации, а также к обучению и расширению способностей персонала;

б) постоянным изменением в процессе функционирования, расширением своих способностей взаимодействия с окружающей деловой средой и быстрой адаптацией к постоянно меняющимся внешним и внутренним условиям;

в) широким распространением открытых компьютерных сетей, охватывающих не только отдельные организации, предприятия или их конгломераты, но и целые крупные регионы и даже совокупности стран (ЕЭС, СВИФТ и др.), что обусловливает новые возможности организации и повышения эффективности работы предприятий и отраслей в масштабах всей страны и даже всего мира.

Считается, что ОСУ должна создаваться на принципах многофункциональности и многоаспектности, позволяющих эффективно контролировать сложные рынки и распределять имеющиеся ресурсы. Из анализа мирового опыта функционирования ОСУ в условиях рынка применительно к российской экономике и ее субъектам хозяйствования можно выделить следующие рекомендации:

1) иерархическую ОСУ можно сохранять и применять с минимумом риска для предприятия, если высшее руководство фирмы способно выступать в качестве координаторов проблем, а их подчиненные — в качестве «маленьких предпринимателей»; при этом предпринимательская инициатива и ответственность перемещаются с верхних в нижние эшелоны фирменной власти при исполнении иерархами действительно координаторских функций;

2) матричную ОСУ можно сохранять, если в фирме отсутствует механическое дублирование служебных инстанций и существует органичная сетевая структура с оптимальной коммуникацией;

3) дуальную ОСУ следует применять при ясности и контролируемости как ключевых связей между основными и сопутствующими структурами, так и прозрачности функций самой системы сопутствующих вторичных структур, причем они должны быть многофункциональными и многоцелевыми (типа «учебных центров»), а не специализированными, ориентированными лишь на собственные потребности;

4) параллельную ОСУ следует применять при сформированной конструктивной конкурентной культуре, сотрудничестве партнеров на базе доверия, терпимости, готовности разрешать конфликты, а в острых ситуациях иметь нейтральную «третейскую» инстанцию.

При наличии средних предприятий, состоящих из слабо интегрированных функциональных подразделений, на вторичные структуры можно возложить решение интеграционных проблем, но эффект от реализации этого механизма получится при осознании руководством подразделений создания структурной надстройки как средства поддержки их собственной позиции, а не как угрозу для их существования.

Развитие на стыке кибернетики, вычислительных сетей, менеджмента и социальной психологии направления Groupware (США), связанного с электронными информационными системами, локальными диалоговыми сетями и средствами их поддержки, обеспечивает распределенную работу больших коллективов людей в режиме прямого доступа, позволяя хранить в машинной памяти огромный объем информации (любую деловую, производственно-техническую и прочую документацию, совещания, переговоры организации и даже обычные разговоры ее сотрудников, а также всю предысторию и опыт работы), используя ее при необходимости для корректировки структуры, функций, задач, стратегии и тактики управления в деятельности конкретной организации. Такой подход по-новому раскрывает понятие обучающейся организации, обеспечивает проведение аналогий между процессами, протекающими в живых и в диалоговых компьютерных системах.

Если обучение и память обусловливают выживание живых систем, то аналогично организационное обучение и память влияют на эффективность деятельности любой организации при изменении деловой внешней среды. Обучение, как живых, так и организационных систем обязательно ведет к структурным изменениям. Организационно правильно построенная компьютерная сеть может вызывать качественный сдвиг в улучшении корпоративной деятельности. Гибкость и широта функциональных возможностей рабочих групп, реализующих управление проектами при минимуме затрат на координацию их работы, обусловливают рост и качество исполнения крупных задач, стоящих перед фирмами, необходимость оптимизации функциональных подразделений и организационных структур в целом, изменения связей между функциональными единицами в зависимости от складывающихся ситуаций.

Качество реструктуризации в живых и организационных системах определяется совокупностью унаследованного и приобретенного поведения, эффективностью обучения и памяти, организации инфраструктур, обеспечивающих совершенствование взаимосвязей и диалогов между людьми. Повышение скорости обучения и эффективности памяти организации зависит от способа управления взаимоотношениями и диалогами между людьми. Сегодня коммуникации — это координация действий, а не передача информации. Организационные инфраструктуры должны расширять возможности формирования и поддержки диалогов между людьми независимо от их традиций, культуры и др. Пример тому организация и распространение сети Internet и ей подобных.

Учет специфики моделей разновидностей СМО в практической деятельности субъектов рынка позволяет:

Провести более глубокий анализ особенностей функционирования сложных систем, оценить их качество и эффективность с получением конкретных количественных оценок;

Вскрыть имеющиеся резервы и возможности по оптимизации протекающих процессов, экономии финансовых и прочих ресурсов, снижению рисков в условиях неопределенности деловой внешней и внутренней среды.

Рассмотрим эти вопросы подробнее.

2. СИСТЕМЫ И МОДЕЛИ МАССОВОГО ОБСЛУЖИВАНИЯ. КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО).

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского уче-ного А. К. Эрланга (1878—1929), с его трудами в области проекти-рования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной мате-матики, занимающаяся анализом процессов в системах произ-водства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и пере-дачи информации; автоматических линиях производства и др.

Большой вклад в развитие этой теории внесли российские математики А. Я. Хинчин, Б. В. Гнеденко, А. Н. Колмогоров, Е. С. Вентцель и др.

Предметом теории массового обслуживания является установ-ление зависимостей между характером потока заявок, числом ка-налов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум сум-марных затрат от ожидания обслуживания, потерь времени и ре-сурсов на обслуживание и от простоев каналов обслуживания.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, напри-мер обслуживание продавцами покупателей в магазинах, обслу-живание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслужива-ния, обеспечение телефонных разговоров на телефонной стан-ции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а опера-ции обслуживания выполняются кем-либо или чем-либо, назы-ваемыми каналами (узлами) обслуживания.

Заявки в силу массовости поступления на обслуживание об-разуют потоки, которые до выполнения операций обслужива-ния называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки об-служивания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока за-явок, очереди, каналов обслуживания и выходящего потока за-явок образует простейшую систему массового обслуживания — СМО.

Одним из параметров входного потока заявок является интенсивность входящего потока заявок λ ;

К параметрам каналов обслуживания заявок относятся: интенсивность обслуживания μ , число каналов обслуживания n .

Параметрами очереди являются: максимальное число мест в очереди L max ; дисциплина очереди D («первым пришел - первым ушел» (FIFO); «последним пришел - первым ушел» (LIFO); с приоритетами; случайный выбор из очереди).

Процедура обслуживания считается завершенной, когда заяв-ка на обслуживание покидает систему. Продолжительность ин-тервала времени, требуемого для реализации процедуры обслу-живания, зависит в основном от характера запроса заявки на об-служивание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, например, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой — от формы организации об-служивания и обслуживающего персонала, что может значитель-но повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания.

Под обслуживанием заявок мы будем понимать процесс удовле-творения потребности. Обслуживание имеет различный характер по своей природе. Однако во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства.

В некоторых случаях обслуживание производится одним челове-ком (обслуживание покупателя одним продавцом), в некоторых — группой людей (обслуживание клиента в ресторане), а в некоторых случаях — техническими устройст-вами (продажа газированной воды, бутербродов автоматами).

Совокупность средств, которые осуществляют обслуживание за-явок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одина-ковые заявки, то каналы обслуживания называются однородны-ми.

Совокупность однородных каналов обслуживания называет-ся обслуживающей системой.

В систему массового обслуживания поступает большое коли-чество заявок в случайные моменты времени, длительность обслу-живания которых также является случайной величиной. Последо-вательное поступление заявок в систему обслуживания называет-ся входящим потоком заявок , а последовательность заявок, покидающих систему обслуживания, — выходящим потоком .

Если максимальная длина очереди L max = 0 , то СМО является системой без очередей.

Если L max = N 0 , где N 0 >0 - некоторое положительное число, то СМО является системой с ограниченной очередью.

Если L max → ∞, то СМО является системой с бесконечной очередью.

Случайный характер распределения длительности выполне-ния операций обслуживания, наряду со случайным характером поступления требований на обслуживание, приводит к тому, что в каналах обслуживания протекает случайный процесс, который может быть назван (по аналогии с входным потоком заявок) потоком обслуживания заявок или просто потоком обслуживания .

Заметим, что заявки, поступающие в систему обслуживания, могут покинуть ее и будучи не обслуженными. Например, если покупатель не найдет в магазине нужный товар, то он покидает магазин, будучи не обслуженным. Покупатель может покинуть магазин также, если нужный товар имеется, но большая очередь, а покупатель не располагает временем.

Теория массового обслуживания занимается изучением про-цессов, связанных с массовым обслуживанием, разработкой ме-тодов решения типичных задач массового обслуживания.

При исследовании эффективности работы системы обслужи-вания важную роль играют различные способы расположения в системе каналов обслуживания.

При параллельном расположении каналов обслуживания тре-бование может быть обслужено любым свободным каналом.

Примером такой системы обслуживания является расчетный узел в магазинах самообслуживания, где число каналов обслужи-вания совпадает с числом кассиров-контролеров.

На практике часто обслуживание одной заявки осуществля-ется последовательно несколькими каналами обслуживания .

При этом очередной канал обслуживания начинает работу по обслуживанию заявки после того, как предыдущий канал закончил свою работу. В таких системах процесс обслуживания носит многофазовый характер , обслуживание заявки одним каналом называется фазой обслуживания . Например, если в магазине са-мообслуживания имеются отделы с продавцами, то покупатели сначала обслуживаются продавцами, а потом уже кассирами-контролерами.

Организация системы обслуживания зависит от воли челове-ка. Под качеством функционирования системы в теории массо-вого обслуживания понимают не то, насколько хорошо выполне-но обслуживание, а то, насколько полно загружена система об-служивания, не простаивают ли каналы обслуживания, не образуется ли очередь .

Работу системы обслуживания характеризуют такие показате-ли, как время ожидания начала обслуживания, длина очереди, возможность получения отказа в обслуживании, возможность простоя каналов обслуживания, стоимость обслуживания и в ко-нечном итоге удовлетворение качеством обслуживания.

Чтобы улучшить качество функционирования системы об-служивания, необходимо определить, каким образом распреде-лить поступающие заявки между каналами обслуживания, какое количество каналов обслуживания необходимо иметь, как распо-ложить или сгруппировать каналы обслуживания или обслужива-ющие аппараты для улучшения показателей. Для решения перечисленных задач существует эффек-тивный метод моделирования, включающий и объединяющий достижения разных наук, в том числе математики.

Потоки событий.

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий — поступле-ния заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты вре-мени, формирует так называемый поток событий .

Примерами таких потоков являются потоки различной природы — потоки товаров, денег, документов; транспортные потоки; потоки клиентов, покупателей; потоки телефонных звонков, переговоров и др. По-ведение системы обычно определяется не одним, а сразу не-сколькими потоками событий. Например, обслуживание поку-пателей в магазине определяется потоком покупателей и пото-ком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является веро-ятностное распределение времени между соседними события-ми. Существуют различные потоки, которые отличаются свои-ми характеристиками.

Поток событий называется регулярным , если в нем события следуют одно за другим через заранее заданные и строго опреде-ленные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегу-лярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зави-сит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени.

То есть стационарным называется поток , для которого математическое ожидание числа требований, поступающих в систему в единицу времени (обозначим λ), не меняется во времени. Таким образом, вероятность поступления в систему определен-ного количества требований в течение заданного промежутка времени?t зависит от его величины и не зависит от начала его отсчета на оси времени.

Стационарность потока означает независимость от времени его вероятностных характеристик; в частности, интенсивность тако-го потока есть среднее число событий в единицу времени и оста-ется величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента t, не определяет того, сколько требований поступит в систему за промежуток вре-мени от t до t+?t.

Например, если на ткацком станке в данный момент произошел обрыв нити, и он устранен ткачихой, то это не оп-ределяет, произойдет новый обрыв на данном станке в следующий момент или нет, тем более это не влияет на веро-ятность возникновения обрыва на других станках.

Поток событий называется потоком без последствия , если число событий, попадающих на один из произвольно выбран-ных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой.

В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждо-го из них, не связаны с аналогичными причинами для других по-купателей.

Поток событий называется ординарным , если вероятность по-падания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попа-дания только одного события.

Другими словами, ординарность потока означает практическую невозмож-ность одновременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы станков, обслуживаемых бригадой ремонтников, одновременно выйдут из строя сразу несколько станков. В ординарном потоке события происходят поодиночке, а не по два (или более) сразу.

Если поток одновременно обладает свойствами стационарнос-ти, ординарности и отсутствием последствия , то такой поток назы-вается простейшим (или пуассоновским) потоком событий .

Мате-матическое описание воздействия такого потока на системы ока-зывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Методы и модели, применяющиеся в теории массового обслуживания (ТМО), можно условно разделить на АНАЛИТИЧЕСКИЕ и ИМИТАЦИОННЫЕ.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некото-рые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

Имитационные методы основаны на моделировании процес-сов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения та-ких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность по-ступления за время t ровно k требований задается формулой:

Важная характеристика СМО — время обслуживания требований в системе.

Время обслуживания одного требования является, как правило, случайной величиной и, следователь-но, может быть описано законом распределения.

Наибольшее распространение в теории и особенно в практических прило-жениях получил экспоненциальный закон распределения времени обслуживания . Функция распределения для этого закона имеет вид:

F(t) = 1 - e - μ t , (2)

т.е. вероятность того, что время обслуживания не превосхо-дит некоторой величины t, определяется формулой (2), где μ — параметр экспоненциального закона распределения времени обслуживания требований в системе. То есть μ - это величина, обратная среднему времени обслуживания ? o6 . :

μ = 1/ ? o6 . (3)

Кроме понятия простейшего потока событий часто приходит-ся пользоваться понятиями потоков других типов.

Поток собы-тий называется потоком Пальма , когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тn являются независимыми, одинаково распределенными, слу-чайными величинами, но в отличие от простейшего потока необязательно распределенными по показательному закону.

Про-стейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так назы-ваемый поток Эрланга . Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего пото-ка. Например, условившись учитывать только каждое второе со-бытие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д. Можно полу-чить потоки Эрланга любого k-го порядка. Очевидно, простей-ший поток есть поток Эрланга первого порядка.

КЛАССИФИКАЦИЯ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

Любое исследование системы массового обслуживания (СМО) начи-нается с изучения того, что необходимо обслуживать, следова-тельно, с изучения входящего потока заявок и его характеристик.

1. В зависимости от условий ожидания начала обслуживания различают:

СМО с потерями (отказами),

СМО с ожиданием.

В СМО с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и теряются. Классическим примером системы с отказами явля-ется телефонная станция. Если вызываемый абонент занят, то требование на соединение с ним получает отказ и теряется.

В СМО с ожиданием требование, застав все обслуживаю-щие каналы занятыми, становится в очередь и ожидает, пока не освободится один из обслуживающих каналов.

СМО, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ограниченной длиной очереди .

СМО, допускающие очередь , но с ограниченным сроком пребывания каждого требования в ней, называются систе-мами с ограниченным временем ожидания.

2. По числу каналов обслуживания СМО делятся на

- одноканальные ;

- многоканальные .

3. По месту нахождения источника требований

СМО делятся на:

- разомкнутые , когда источник требования находится вне системы;

- замкнутые , когда источник находится в самой системе.

Примером разомкнутой системы может служить мастерская по обслуживанию и ремонту бытовой техники. Здесь неисправные устройства — это источник требований на их обслуживание, находятся вне самой системы, число требований можно считать неограни-ченным.

К замкнутым СМО относится, например, станочный участок, в котором станки являются источником неисправностей, и, следовательно, источником требований на их обслу-живание , например, бригадой наладчиков.

Возможны и другие признаки классификации СМО, на-пример, по дисциплине обслуживания , однофазные и многофазные СМО и др.

3. МОДЕЛИ СМО. ПОКАЗАТЕЛИ КАЧЕСТВА ФУНКЦИОНИРОВАНИЯ СМО.

Рассмотрим аналитические модели наиболее распростра-ненных СМО с ожиданием, т.е. таких СМО, в которых требо-вания, поступившие в момент, когда все обслуживающие ка-налы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ СОСТОИТ В СЛЕДУЮЩЕМ.

Система имеет n обслуживающих каналов , каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пуассоновский) поток требований с параметром λ .

Если в момент поступления оче-редного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

Время обслуживания каждого требования t об. — случайная величина, которая подчиняется экспоненциальному за-кону распределения с параметром μ .

СМО С ОЖИДАНИЕМ МОЖНО РАЗБИТЬ НА ДВЕ БОЛЬШИЕ ГРУППЫ: ЗАМКНУТЫЕ И РАЗОМКНУТЫЕ.

К замкнутым относятся системы, в которых поступающий поток требований возникает в самой системе и ограничен .

Например, мастер, задачей кото-рого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится потенциальным источником требований на накладку. В по-добных системах общее число циркулирующих требования конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований , то системы называются разомкнутыми.

Приме-рами подобных систем могут служить магазины, кассы вокза-лов, портов и др. Для этих систем поступающий поток требо-ваний можно считать неограниченным.

Отмеченные особенности функционирования систем этих двух видов накладывают определенные условия на исполь-зуемый математический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей состояний СМО (так называемые фор-мулы Эрланга ).

  1. 1. РАЗОМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ С ОЖИДАНИЕМ.

Рассмотрим алгоритмы расчета показателей качества функционирования разомкнутой СМО с ожиданием.

При изучении таких систем рассчитывают различные по-казатели эффективности обслуживающей системы. В каче-стве основных показателей могут быть вероятность того, что все каналы свободны или заняты, математическое ожидание длины очереди (средняя длина очереди), коэффициенты за-нятости и простоя каналов обслуживания и др.

Введем в рассмотрение параметр α = λ/μ . Заметим, что если выполняется неравенство α / n < 1, то очередь не может расти безгранично.

Это условие имеет следующий смысл: λ — среднее число требо-ваний, поступающих за единицу времени , 1/μ — среднее время обслуживания одним каналом одного требования, тогда α = λ (1/ μ) — среднее число каналов, которое необходимо иметь, чтобы обслуживать в единицу времени все поступаю-щие требования. Тогда μ - среднее число требований, обслуживаемых одним каналом за единицу времени.

Поэтому условие: α / n < 1, означает, что чис-ло обслуживающих каналов должно быть больше среднего числа каналов, необходимых для того, чтобы за единицу времени обслужить все поступившие требования .

ВАЖНЕЙ-ШИЕ ХАРАКТЕРИСТИКИ РАБОТЫ СМО (для разомкнутой системы массового обслуживания с ожиданием ):

1. Вероятность P 0 того, что все обслуживающие каналы сво-бодны:

2. Вероятность P k того, что занято ровно k обслуживающих каналов при условии, что общее число требований, находя-щихся на обслуживании, не превосходит числа обслуживающих аппаратов, то есть при 1 k n :

3. Вероятность P k того, что в системе находится k требований в случае, когда их число больше числа обслуживающих каналов, то есть при k > n :

4. Вероятность Pn того, что все обслуживающие каналы заняты:

5. Среднее время ожидания требованием начала обслу-живания в системе:

6. Средняя длина очереди:

7. Среднее число свободных от обслуживания каналов:

8. Коэффициент простоя каналов:

9. Среднее число занятых обслуживанием каналов:

10. Коэффициент загрузки каналов

Фирма по обслуживанию и ремонту бытовой техники и электроники имеет филиал: мастерскую по ремонту мобильных телефонов, в которой работает n = 5 опытных мастеров. В среднем в течение рабочего дня от населения поступает в ремонт λ =10 мобильных телефонов. Общее число мобильных телефонов, находящихся в эксплуатации у населения, очень велико, и они независимо друг от друга в различное время выходят из строя. Поэтому есть основания считать, что поток заявок на ремонт ап-паратуры является случайным, пуассоновским. В свою оче-редь каждый мобильный телефон в зависимости от характера неисправ-ности также требует различного случайного времени на ре-монт. Время на проведение ремонта зависит во многом от серьезности полученного повреждения, квалификации мас-тера и множества других причин. Пусть статистика показа-ла, что время ремонта подчиняется экспоненциальному за-кону; при этом в среднем в течение рабочего дня каждый из мастеров успевает отремонтировать μ = 2,5 мобильных телефона.

Требуется оценить работу филиала фирмы по ремонту -бытовой техники и электроники, рассчитав ряд основных характеристик данной СМО.

За единицу времени принимаем 1 рабочий день (7 часов).

1. Определим параметр

α = λ / μ = 10/ 2,5 = 4.

Так как α < n = 5, то можно сделать вывод: очередь не может расти безгранично.

2. Вероятность P 0 того, что все мастера свободны от ремонта аппаратуры, равна согласно (4):

P0 = (1 + 4 + 16/2 + 64/3! + 256/4! + 1024/5!(1- 4/5)) -1 = (77) -1 ≈ 0,013.

3. Вероятность P5 того, что все мастера заняты ремонтом, находим по формуле (7) (Pn при n=5):

P5 = P0 1024 /5! (1-4/5) = P0 256 /6 ≈ 0,554.

Это означает, что 55,4% времени мастера полностью за-гружены работой.

4. Среднее время обслуживания (ремонта) одного аппарата согласно формуле (3):

? o6. = 1/ μ = 7/2,5 = 2,8 ч./аппарат (важно: единица времени - 1 рабочий день, т. е. 7 часов).

5. В среднем время ожидания каждого неисправного мобильного телефона начала ремонта равно по формуле (8):

Ож. = Pn/(μ (n-α)) = 0,554 2,8/(5 - 4) =1,55 часа.

6. Очень важной характеристикой является средняя длина очереди, которая определяет необходимое место для хранения аппаратуры, требующей ремонта; находим ее по формуле (9):

Оч. = 4 P5/ (5-4) ≈ 2,2 моб. телефона.

7. Определим среднее число мастеров, свободных от ра-боты, по формуле (10):

Ñ0 = P0 (5 + 16 + 24+ 64/3 + 32/3) = P0 77 ≈ 1 мастер.

Таким образом, в среднем в течение рабочего дня ремонтом заняты четыре мастера из пяти.

  1. 2. ЗАМКНУТАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ.

Перейдем к рассмотрению алгоритмов расчета характери-стик функционирования замкнутых СМО.

Поскольку система замкнутая, то к постановке задачи следует добавить условие: поток поступающих требований ограничен, т.е. в системе обслуживания одновременно не может находиться больше m требований (m — число обслуживаемых объектов).

За критерий, характеризующий качество функциониро-вания рассматриваемой системы, выберем отношение средней длины очереди к наибольшему числу требований, находя-щихся одновременно в обслуживающей системе — коэффици-ент простоя обслуживаемого объекта .

В качестве другого критерия возьмем отношение среднего числа незанятых об-служивающих каналов к их общему числу — коэффициент простоя обслуживаемого канала .

Первый из названных критериев характеризует потери времени из-за ожидания начала обслуживания ; второй по-казывает полноту загрузки обслуживающей системы .

Очевидно, что очередь может возникнуть, лишь когда число каналов обслуживания меньше наибольшего числа требований, нахо-дящихся одновременно в обслуживающей системе (n < m).

Приведем последовательность расчетов характеристик замкнутых СМО и необходимые формулы.

ПАРАМЕТРЫ ЗАМКНУТЫХ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ.

1. Определим параметр α = λ / μ — показатель загрузки системы , то есть математическое ожидание числа требований, поступающих в систему за время, равное средней длитель-ности обслуживания (1/μ = ?o6.).

2. Вероятность P k того, что занято k обслуживающих каналов при условии, что число требований, находящихся в системе, не превосходит числа обслуживающих каналов системы (то есть при m n ) :

3. Вероятность P k того, что в системе находится k требований для случая, когда их число больше числа обслуживающих каналов (то есть при k > n , при этом k m ):

4. Вероятность P 0 того, что все обслуживающие каналы сво-бодны, определим, используя очевидное условие:

Тогда величина P 0 будет равна:

5. Среднее число M оч. требований, ожидающих начала обслу-живания (средняя длина очереди):

Или с учетом формулы (15)

6. Коэффициент простоя обслуживаемого требования (объекта):

7. Среднее число M требований, находящихся в обслуживаю-щей системе, обслуживаемых и ожидающих обслуживания:

где для вычислений первой и второй суммы применяются формулы (14) и (15) соответственно.

8. Среднее число свободных обслуживающих каналов

где P k вычисляется по формуле (14).

9. Коэффициент простоя обслуживающего канала

Рассмотрим пример расчета характеристик замкнутой СМО.

Рабочий обслуживает группу автоматов, состоя-щую из 3 станков. Поток поступающих требований на обслу-живание станков является пуассоновским с параметром λ = 2 ст./ч.

Обслуживание одного станка занимает у рабочего в среднем 12 минут, а время обслуживания подчинено экспоненци-альному закону.

Тогда 1/μ = 0,2 ч./ст., т.е. μ = 5 ст./ч., Параметр α = λ/μ = 0,4.

Необходимо определить среднее число автоматов, ожи-дающих обслуживания, коэффициент простоя автомата, ко-эффициент простоя рабочего.

Обслуживающим каналом здесь является рабочий; так как станки обслуживает один рабочий, то n = 1 . Общее число требований не может пре-взойти числа станков, т.е. m = 3 .

Система может находиться в четырех различных состоя-ниях: 1) все станки работают; 2) один стоит и обслуживается рабочим, а два работают; 3) два стоят, один обслуживается, один ждет обслуживания; 4) три стоят, из них один обслу-живается, а два ждут очереди.

Для ответа на поставленные вопросы можно воспользо-ваться формулами (14) и (15).

P1 = P0 6 0,4/2 = 1,2 P0;

P2 = P0 6 0,4 0,4 = 0,96 P0;

P3 = P0 6 0,4 0,4 0,4= 0,384 P0;

Сведем вычисления в таблицу (рис. 1).

∑P k /P 0 = 3,5440

∑ (k-n)P k = 0,4875

∑k P k = 1,2053

Рис. 1. Вычисление характеристик замкнутой СМО.

В этой таблице первым вычисляется третий столбец, т.е. отношения P k /P 0 при k = 0,1,2,3.

Затем, суммируя величины по третьему столбцу и учитывая, что ∑ P k = 1, получаем 1/P 0 = 3,544. Откуда Р 0 ≈ 0,2822.

Умножая значения, стоящие в третьем столбце, на Р 0 , получаем в соответствующих строках значения четвертого столбца.

Величина Р 0 = 0,2822, рав-ная вероятности того, что все автоматы работают, может быть истолкована как вероятность того, что рабочий свобо-ден. Получается, что в рассматриваемом случае рабочий будет свободен более 1/4 всего рабочего времени. Однако это не оз-начает, что «очередь» станков, ожидающих обслуживания, всегда будет отсутствовать. Математическое ожидание числа автоматов, стоящих в очереди, равно

Суммируя значения, стоящие в пятом столбце таблицы, получим среднюю длину очереди M оч. = 0,4875. Следова-тельно, в среднем из трех станков 0,49 станка будет про-стаивать в ожидании, пока освободится рабочий.

Суммируя значения, стоящие в шестом столбце таблицы, получим математическое ожи-дание числа простаивающих станков (ремонтируемых и ожидающих ремонта): М = 1,2053. То есть в среднем 1,2 станка не будет выдавать продукцию.

Ко-эффициент простоя станка равен К пр.об. = M оч. /3 = 0,1625. То есть каждый станок простаивает примерно 0,16 часть рабо-чего времени в ожидании, пока рабочий освободится.

Коэффициент простоя рабочего в данном случае совпадает с P 0 , так как n = 1 (все обслуживающие каналы свободны), поэтому

К пр.кан. = N 0 /n = 0,2822.

Абчук В.А. Экономико-математические методы: Элементарная математика и логика. Методы исследования операций. - СПб.: Союз, 1999. - 320.

Елтаренко Е.А. Исследование операций (системы массового обслуживания, теория игр, модели управления запасами). Учебное пособие. - М.: МИФИ, 2007. - С. 157.

Фомин Г. П. Математические методы и модели в коммерческой дея-тельности: Учебник. — 2-е изд., перераб. и доп. — М.: Финан-сы и статистика, 2005. — 616 с: ил.

Шелобаев С. И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. — М.: ЮНИТИ- ДАНА, 2001. - 367 с.

Экономико-математические методы и прикладные модели: Учебное пособие для вузов/ В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. — М.: ЮНИТИ, 1999. - 391 с.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.