Белки синтезируются в результате реакции. Физико-химические свойства белков. Строение и функции белков

5. Регуляторная функция . Белки осуществляют функции сигнальных веществ - некоторых гормонов, гистогормонов и нейромедиаторов, являются рецепторами к сигнальным веществам любого строения, обеспечивают дальнейшую передачу сигнала в биохимических сигнальных цепях клетки. Примерами могут служить гормон роста соматотропин , гормон инсулин , Н- и М-холинорецепторы .

6. Двигательная функция . С помощью белков осуществляются процессы сокращения и другого биологического движения. Примерами могут служить тубулин, актин , миозин.

7. Запасная функция . В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами, в организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости.

Для белков характерным является наличие нескольких уровней структурной организации.

Первичной структурой белка называют последовательность аминокислотных остатков в полипептидной цепи. Пептидная связь - это карбоксамидная связь между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой аминокислоты.

аланилфенилаланилцистеилпролин

У пептидной связи есть несколько особенностей:

а) она резонансно стабилизирована и поэтому находится практически в одной плоскости - планарна; вращение вокруг связи С-N требует больших затрат энергии и затруднено;

б) у связи -CO-NH- особый характер, она меньше, чем обычная, но больше, чем двойная, то есть существует кетоенольная таутомерия :

в) заместители по отношению к пептидной связи находятся в транс -положении;

г) пептидный остов окружен разнообразными по своей природе боковыми цепями, взаимодействуя с окружающими молекулами растворителя, свободные карбоксильные и аминогруппы ионизируются, образуя катионные и анионные центры молекулы белка. В зависимости от их соотношения белковая молекула получает суммарный положительный или отрицательный заряд, а также характеризуется тем или иным значением рН среды при достижении изоэлектрической точки белка. Радикалы образуют солевые, эфирные, дисульфидные мостики внутри молекулы белка, а также определяют круг реакций, свойственных белкам.


В настоящее время условились считать белками полимеры, состоящие из 100 и более аминокислотных остатков, полипептидами - полимеры, состоящие из 50-100 аминокислотных остатков, низкомолекулярными пептидами - полимеры, состоящие из менее 50 аминокислотных остатков.

Некоторые низкомолекулярные пептиды играют самостоятельную биологическую роль. Примеры некоторых таких пептидов:

Глутатион - γ-глу-цис-гли - один из наиболее широко распространен-ных внутриклеточных пептидов, принимает участие в окислительно-восстановительных процессах в клетках и переносе аминокислот через биологические мембраны.

Карнозин - β-ала-гис - пептид, содержащийся в мышцах животных, устраняет продукты перекисного расщепления липидов, ускоряет процесс распада углеводов в мышцах и в виде фосфата вовлекается в энергетический обмен в мышцах.

Вазопрессин - гормон задней доли гипофиза, участвующий в регуля-ции водного обмена организма:

Фаллоидин - ядовитый полипептид мухомора, в ничтожных концентрациях вызывает гибель организма вследствие выхода ферментов и ионов калия из клеток:

Грамицидин - антибиотик , действующий на многие грамположительные бактерии, изменяет проницаемость биологических мембран для низкомолекулярных соединений и вызывает гибель клеток:

Мет -энкефалин - тир-гли-гли-фен-мет - пептид, синтезирующийся в нейронах и ослабляющий болевые ощущения.

Вторичная структура белка - это пространственная структура, образующаяся в результате взаимодействий между функциональными группами пептидного остова.

Пептидная цепь содержит множество СО- и NH-групп пептидных связей, каждая из которых потенциально способна участвовать в образовании водородных связей. Существуют два главных типа структур, которые позволяют это осуществить: α-спираль, в которую цепь свертывается как шнур от телефонной трубки, и складчатая β-структура, в которой бок о бок уложены вытянутые участки одной или нескольких цепей. Обе эти структуры весьма стабильны.

α-Спираль характеризуется предельно плотной упаковкой скрученной полипептидной цепи, на каждый виток правозакрученной спирали приходится 3,6 аминокислотных остатка, радикалы которых направлены всегда наружу и немного назад, то есть в начало полипептидной цепи.

Основные характеристики α-спирали:

1) α-спираль стабилизируется водородными связями между атомом водорода при азоте пептидной группы и карбонильным кислородом остатка, отстоящего от данного вдоль цепи на четыре позиции;

2) в образовании водородной связи участвуют все пептидные группы, это обеспечивает максимальную стабильность α-спирали;

3) в образовании водородных связей вовлечены все атомы азота и кислорода пептидных групп, что в значительной мере снижает гидрофильность α-спиральных областей и увеличивает их гидрофобность;

4) α-спираль образуется самопроизвольно и является наиболее устойчивой конформацией полипептидной цепи, отвечающей минимуму свободной энергии;

5) в полипептидной цепи из L-аминокислот правая спираль, обычно обнаруживаемая в белках, намного стабильнее левой.

Возможность образования α-спирали обусловлена первичной структурой белка. Некоторые аминокислоты препятствуют закручиванию пептидного остова. Например, расположенные рядом карбоксильные группы глутамата и аспартата взаимно отталкиваются друг от друга, что препятствует образованию водородных связей в α-спирали. По этой же причине затруднена спирализация цепи в местах близко расположенных друг к другу положительно заряженных остатков лизина и аргинина. Однако наибольшую роль в нарушении α-спирали играет пролин. Во-первых, в пролине атом азота входит в состав жесткого кольца, что препятствует вращению вокруг связи N-C, во-вторых, пролин не образует водородную связь из-за отсутствия водорода при атоме азота.

β-складчатость - это слоистая структура , образуемая водородными связями между линейно расположенными пептидными фрагментами. Обе цепи могут быть независимыми или принадлежать одной молекуле полипептида. Если цепи ориентированы в одном направлении, то такая β-структура называется параллельной. В случае противоположного направления цепей, то есть когда N-конец одной цепи совпадает с С-концом другой цепи, β-структура называется антипараллельной. Энергетически более предпочтительна антипараллельная β-складчатость с почти линейными водородными мостиками.

параллельная β-складчатость антипараллельная β-складчатость

В отличие от α-спирали , насыщенной водородными связями, каждый участок цепи β-складчатости открыт для образования дополнительных водородных связей. Боковые радикалы аминокислот ориентированы почти перпендикулярно плоскости листа попеременно вверх и вниз.

В тех участках, где пептидная цепь изгибается достаточно круто, часто находится β-петля. Это короткий фрагмент, в котором 4 аминокислотных остатка изгибаются на 180 о и стабилизируются одним водородным мостиком между первым и четвертым остатками. Большие аминокислотные радикалы мешают образованию β-петли, поэтому в нее чаще всего входит самая маленькая аминокислота глицин.

Надвторичная структура белка - это некоторый специфический порядок чередования вторичных структур. Под доменом понимают обособленную часть молекулы белка, обладающую в определенной степени структурной и функциональной автономией. Сейчас домены считают фундаментальными элементами структуры белковых молекул и соотношение и характер компоновки α-спиралей и β-слоев дает для понимания эволюции белковых молекул и филогенетических связей больше, чем сопоставление первичных структур.

Главной задачей эволюции является конструирование все новых белков. Бесконечно мал шанс случайно синтезировать такую аминокислотную последовательность, которая бы удовлетворила условиям упаковки и обеспечила выполнение функциональных задач. Поэтому часто встречаются белки с различной функцией, но сходные по структуре настолько, что кажется, что они имели одного общего предка или произошли друг от друга. Похоже, что эволюция, столкнувшись с необходимостью решить определенную задачу, предпочитает не конструировать для этого белки сначала, а приспособить для этого уже хорошо отлаженные структуры, адаптируя их для новых целей.

Некоторые примеры часто повторяющихся надвторичных структур:

1) αα’ - белки, содержащие только α-спирали (миоглобин, гемоглобин);

2) ββ’ - белки, содержащие только β-структуры (иммуноглобулины, супероксиддисмутаза);

3) βαβ’ - структура β-бочонка, каждый β-слой расположен внутри бочонка и связан с α-спиралью, находящейся на поверхности молекулы (триозофосфоизомераза, лактатдегидрогеназа);

4) «цинковый палец» - фрагмент белка, состоящий из 20 аминокислотных остатков, атом цинка связан с двумя остатками цистеина и двумя гистидина, в результате чего образуется «палец» из примерно 12 амино-кислотных остатков, может связываться с регуляторными участками молекулы ДНК;

5) «лейциновая застежка-молния» - взаимодействующие белки имеют α-спиральный участок, содержащий по крайней мере 4 остатка лейцина, они расположены через 6 аминокислот один от другого, то есть находятся на поверхности каждого второго витка и могут образовывать гидрофобные связи с лейциновыми остатками другого белка. С помощью лейциновых застежек, например, молекулы сильноосновных белков гистонов могут объединяться в комплексы, преодолевая положительный заряд.

Третичная структура белка - это пространственное расположение молекулы белка, стабилизируемое связями между боковыми радикалами аминокислот.

Типы связей, стабилизирующих третичную структуру белка:

электростатическое водородные гидрофобные дисульфидные взаимодействие связи взаимодействия связи

В зависимости от складывания третичной структуры белки можно классифицировать на два основных типа - фибриллярные и глобулярные.

Фибриллярные белки - нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси. В основном это структурные и сократительные белки. Несколько примеров самых распространенных фибриллярных белков:

1. α- Кератины . Синтезируются клетками эпидермиса. На их долю приходится почти весь сухой вес волос, шерсти, перьев, рогов, ногтей, когтей, игл, чешуи, копыт и черепашьего панциря, а также значительная часть веса наружного слоя кожи. Это целое семейство белков, они сходны по аминокислотному составу, содержат много остатков цистеина и имеют одинаковое пространственное расположение полипептидных цепей.

В клетках волос полипептидные цепи кератина сначала организуются в волокна, из которых затем формируются структуры наподобие каната или скрученного кабеля, заполняющего в конце концов все пространство клетки. Клетки волос становятся при этом уплощенными и, наконец, отмирают, а клеточные стенки образуют вокруг каждого волоса трубчатый чехол, называемый кутикулой. В α-кератине полипептидные цепи имеют форму α-спирали, скручены одна вокруг другой в трехжильный кабель с образованием поперечных дисульфидных связей.

N-концевые остатки расположены с одной стороны (параллельны). Кератины нерастворимы в воде из-за преобладания в их составе аминокислот с неполярными боковыми радикалами, которые обращены в сторону водной фазы. При химической завивке происходят следующие процессы: вначале путем восстановления тиолами разрушаются дисульфидные мостики, а затем при придании волосам необходимой формы их высушивают нагреванием, при этом за счет окисления кислородом воздуха образуются новые дисульфидные мостики, которые сохраняют форму прически.

2. β-Кератины . К ним относятся фиброин шелка и паутины. Представляют из себя антипараллельные β-складчатые слои с преобладанием глицина, аланина и серина в составе.

3. Коллаген . Самый распространенный белок у высших животных и главный фибриллярный белок соединительных тканей. Коллаген синтезируется в фибробластах и хондроцитах - специализированных клетках соединительной ткани, из которых затем выталкивается. Коллагеновые волокна находятся в коже, сухожилиях, хрящах и костях. Они не растяги-ваются, по прочности превосходят стальную проволоку, коллагеновые фибриллы характеризуются поперечной исчерченностью.

При кипячении в воде волокнистый , нерастворимый и неперевариваемый коллаген превращается в желатин в результате гидролиза некоторых ковалентных связей. Коллаген содержит 35% глицина, 11% аланина, 21% пролина и 4-гидроксипролина (аминокислоты, свойственной только для коллагена и эластина). Такой состав определяет относительно низкую питательную ценность желатина как пищевого белка. Фибриллы коллагена состоят из повторяющихся полипептидных субъединиц, называемых тропоколлагеном. Эти субъединицы уложены вдоль фибриллы в виде параллельных пучков по типу «голова к хвосту». Сдвинутость головок и придает характерную поперечную исчерченность. Пустоты в этой структуре при необходимости могут служить местом отложения кристаллов гидроксиапатита Са 5 (ОН)(РО 4) 3 , играющего важную роль в минерализации костей.

Тропоколлагеновые субъединицы состоят из трех полипептидных цепей, плотно скрученных в виде трехжильного каната, отличающегося от α- и β-кератинов. В одних коллагенах все три цепи имеют одинаковую аминокислотную последовательность, тогда как в других идентичны только две цепи, а третья отличается от них. Полипептидная цепь тропоколлагена образует левую спираль, на один виток которой приходится только три аминокислотных остатка из-за изгибов цепи, обусловленной пролином и гидроксипролином. Три цепи связаны между собой кроме водородных связей связью ковалентного типа, образующейся между двумя остатками лизина, находящимися в соседних цепях:

По мере того как мы становимся старше , в тропоколлагеновых субъединицах и между ними образуется все большее число поперечных связей, что делает фибриллы коллагена более жесткими и хрупкими, и это изменяет механические свойства хрящей и сухожилий, делает более ломкими кости и понижает прозрачность роговицы глаза.

4. Эластин . Содержится в желтой эластичной ткани связок и эластическом слое соединительной ткани в стенках крупных артерий. Основная субъединица фибрилл эластина - тропоэластин. Эластин богат глицином и аланином, содержит много лизина и мало пролина. Спиральные участки эластина растягиваются при натяжении, но возвращаются при снятии нагрузки к исходной длине. Остатки лизина четырех разных цепей образуют ковалентные связи между собой и позволяют эластину обратимо растягиваться во всех направлениях.

Глобулярные белки - белки, полипептидная цепь которых свернута в компактную глобулу, способны выполнять самые разнообразные функции.

Третичную структуру глобулярных белко в удобнее всего рассмотреть на примере миоглобина. Миоглобин - это относительно небольшой кислород-связывающий белок, присутствующий в мышечных клетках. Он запасает связанный кислород и способствует его переносу в митохондрии. В молекуле миоглобина находится одна полипептидная цепь и одна гемогруппа (гем) - комплекс протопорфирина с железом.

Основные свойства миоглобина :

а) молекула миоглобина настолько компактна, что внутри нее может уместиться всего 4 молекулы воды;

б) все полярные аминокислотные остатки, за исключением двух, расположены на внешней поверхности молекулы, причем все они находятся в гидратированном состоянии;

в) большая часть гидрофобных аминокислотных остатков расположена внутри молекулы миоглобина и, таким образом, защищена от соприкосно-вения с водой;

г) каждый из четырех остатков пролина в молекуле миоглобина находится в месте изгиба полипептидной цепи, в других местах изгиба расположены остатки серина, треонина и аспарагина, так как такие аминокислоты препятствуют образованию α-спирали, если находятся друг с другом;

д) плоская гемогруппа лежит в полости (кармане) вблизи поверхности молекулы, атом железа имеет две координационные связи, направленные перпендикулярно плоскости гемма, одна из них связана с остатком гистидина 93, а другая служит для связывания молекулы кислорода.

Начиная с третичной структуры белок становится способным выполнять свойственные ему биологические функции. В основе функционирования белков лежит то, что при укладке третичной структуры на поверхности белка образуются участки, которые могут присоединять к себе другие молекулы, называемые лигандами. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда. Комплементарность - это пространственное и химическое соответствие взаимодействующих поверхностей. Для большей части белков третичная структура - максимальный уровень укладки.

Четвертичная структура белка - характерна для белков, состоящих из двух и более полипептидных цепей, связанных между собой исключительно нековалентными связями, в основном электростатическими и водородными. Чаще всего белки содержат две или четыре субъединицы, более четырех субъединиц обычно содержат регуляторные белки.

Белки, имеющие четвертичную структуру , часто называются олигомерными. Различают гомомерные и гетеромерные белки. К гомо-мерным относятся белки, у которых все субъединицы имеют одинаковое строение, например, фермент каталаза состоит их четырех абсолютно одинаковых субъединиц. Гетеромерные белки имеют разные субъединицы, например, фермент РНК-полимераза состоит из пяти разных по строению субъединиц, выполняющих разные функции.

Взаимодействие одной субъединицы со специфическим лигандом вызывает конформационные изменения всего олигомерного белка и изменяет сродство других субъединиц к лигандам, это свойство лежит в основе способности олигомерных белков к аллостерической регуляции.

Четвертичную структуру белка можно рассмотрет ь на примере гемоглобина. Содержит четыре полипептидных цепи и четыре простетические группы гема, в которых атомы железа находятся в закисной форме Fe 2+ . Белковая часть молекулы - глобин - состоит из двух α-цепей и двух β-цепей, содержащих до 70% α-спиралей. Каждая из четырех цепей имеет характерную для нее третичную структуру, с каждой цепью связана одна гемогруппа. Гемы разных цепей сравнительно далеко расположены друг от друга и имеют разный угол наклона. Между двумя α-цепями и двумя β-цепями образуется мало прямых контактов, тогда как между α- и β-цепями возникают многочисленные контакты типа α 1 β 1 и α 2 β 2 , образованные гидрофобными радикалами. Между α 1 β 1 и α 2 β 2 остается канал.

В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду, что позволяет ему при существующих в тканях низких парциальных давлениях кислорода отдавать им значительную часть связанного кислорода. Кислород легче связывается железом гемоглобина при более высоких значениях рН и низкой концентрации СО 2 , свойственные альвеолам легких; освобождению кислорода из гемоглобина благоприятствуют более низкие значения рН и высокие концентрации СО 2 , свойственные тканям.

Кроме кислорода гемоглобин переносит ионы водорода , которые связываются с остатками гистидина в цепях. Также гемоглобин переносит углекислый газ, который присоединяет к концевой аминогруппе каждой из четырех полипептидных цепей, в результате чего образуется карбаминогемоглобин:

В эритроцитах в достаточно больших концентрациях присутствует вещество 2,3-дифосфоглицерат (ДФГ), его содержание увеличивается при подъеме на большую высоту и при гипоксии, облегчая высвобождение кислорода из гемоглобина в тканях. ДФГ располагается в канале между α 1 β 1 и α 2 β 2 , взаимодействуя с положительно зараженными группами β-цепей. При связывании гемоглобином кислорода ДФГ вытесняется из полости. В эритроцитах некоторых птиц содержится не ДФГ, а инозитолгекса-фосфат, который еще больше снижает сродство гемоглобина к кислороду.

2,3-дифосфоглицерат (ДФГ)

HbA - нормальный гемоглобин взрослого человека , HbF - фетальный гемоглобин, имеет большее сродство к О 2 , HbS - гемоглобин при серповидноклеточной анемии. Серповидноклеточная анемия - это серьезное наследственное заболевание, связанное с генетической аномалией гемоглобина. В крови больных людей наблюдается необычно большое количество тонких серповидных эритроцитов, которые, во-первых, легко разрываются, во-вторых, закупоривают кровеносные капилляры.

На молеку-лярном уровне гемоглобин S отличается от гемоглобина А по одному аминокислотному остатку в положении 6 β-цепей, где вместо остатка глутаминовой кислоты находится валин. Таким образом, гемоглобин S содержит на два отрицательных заряда меньше, появление валина приводит к возникновению «липкого» гидрофобного контакта на поверхности молекулы, в результате при дезоксигенации молекулы дезоксигемоглобина S слипаются и образуют нерастворимые аномально длинные нитевидные агрегаты, приводящие к деформации эритроцитов.

Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка выше первичного, поскольку первичная структура определяет и вторичную, и третичную, и четвертичную (если она имеется). Нативной конформацией белка является термодинамически наиболее устойчивая в данных условиях структура.

ЛЕКЦИЯ 6

Различают физические, химические и биологические свойства белков.

Физическими свойствами белков являются наличие молекулярной массы, двойное лучепреломление (изменение оптической характеристики раствора белка, находящегося в движении, по сравнению с раствором, находящимся в покое), обусловленное несферической формой белков, подвижность в электрическом поле, обусловленная зарядом молекул белка. Кроме этого для белков характерны оптические свойства, заключающиеся в способности вращать плоскость поляризации света, рассеивать световые лучи ввиду значительных размеров белковых частиц и поглощать ультрафиолетовые лучи.

Одним из характерных физических свойств белков являются способность адсорбировать на поверхности, а иногда и захватывать внутрь молекулы, низкомолекулярные органические соединения и ионы.

Химические свойства белков отличаются исключительным разнообразием, так как для белков характерны все реакции аминокислотных радикалов и характерна реакция гидролиза пептидных связей.

Имея значительное число кислотных и основных групп , белки проявляют амфотерные свойства. В отличие от свободных аминокислот кислотно-основные свойства белков обусловлены не α-амино- и α-карбокси-группами, занятыми в образовании пептидных связей, а заряженными радикалами аминокислотных остатков. Основные свойства белков обусловлены остатками аргинина , лизина и гистидина. Кислые свойства обусловлены остатками аспарагиновой и глутаминовой кислоты.

Кривые титрования белков достаточно сложны для интерпретации, так как в любом белке имеется слишком большое число титруемых групп, между ионизированными группами белка имеются электростатические взаимодействия, на рК каждой титруемой группы оказывают влияние рядом расположенные гидрофобные остатки и водородные связи. Наибольшее практическое применение имеет изоэлектрическая точка белка - значение рН, при котором суммарный заряд белка равен нулю. В изоэлектрической точке белок максимально инертен, не перемещается в электрическом поле и имеет наиболее тонкую гидратную оболочку.

Белки проявляют буферные свойства , но их буферная емкость незначительна. Исключение составляют белки, содержащие большое число остатков гистидина. Например, содержащийся в эритроцитах гемоглобин за счет очень высокого содержания остатков гистидина имеет значительную буферную емкость при рН около 7, что весьма важно для той роль, которую играют эритроциты в переносе кровью кислорода и углекислого газа.

Для белков характерна растворимость в воде , причем с физической точки зрения они образуют истинные молекулярные растворы. Однако для растворов белков характерны некоторые коллоидные свойства: эффект Тендаля (явление светорассеяния), неспособность проходить через полупроницаемые мембраны, высокая вязкость, образование гелей.

Растворимость белка сильно зависит от концентрации солей, то есть от ионной силы раствора. В дистиллированной воде белки чаще всего растворяются плохо, однако их растворимость возрастает по мере увеличения ионной силы. При этом все большее количество гидратированных неорганических ионов связывается с поверхностью белка и тем самым уменьшается степень его агрегации. При высокой ионной силе ионы солей забирают гидратную оболочку у молекул белка, что приводит к агрегации и выпадению белков в осадок (явление высаливания). Используя различие в растворимости, можно с помощью обычных солей разделить смесь белков.

К числу биологических свойств белков относят в первую очередь их каталитическую активность. Другое важное биологическое свойство белков - их гормональная активность, то есть способность воздействовать на целые группы реакций в организме. Некоторым белкам присущи токсические свойства, патогенная активность, защитные и рецепторные функции, ответственность за явления клеточной адгезии.

Еще одно своеобразное биологическое свойство белков - денатурация . Белки в их естественном состоянии носят название нативных. Денатурация - это разрушение пространственной структуры белков при действии денатурирующих агентов. Первичная структура белков при денатурации не нарушается, но теряется их биологическая активность, а также растворимость, электрофоретическая подвижность и некоторые другие реакции. Радикалы аминокислот, формирующие активный центр белка, при денатурации оказываются пространственно удаленными друг от друга, то есть разрушается специфический центр связывания белка с лигандом. Гидрофобные радикалы, обычно находящиеся в гидрофобном ядре глобулярных белков, при денатурации оказываются на поверхности молекулы, тем самым создаются условия для агрегации белков, которые выпадают в осадок.

Реагенты и условия, вызывающие денатурацию белков:

Температура выше 60 о С - разрушение слабых связей в белке,

Кислоты и щелочи - изменение ионизации ионогенных групп, разрыв ионных и водородных связей,

Мочевина - разрушение внутримолекулярных водородных связей в резуль-тате образования водородных связей с мочевиной,

Спирт, фенол, хлорамин - разрушение гидрофобных и водородных связей,

Соли тяжелых металлов - образование нерастворимых солей белков с иона-ми тяжелых металлов.

При удалении денатурирующих агентов возможна ренативация, так как пептидная цепь стремится принять в растворе конформацию с наименьшей свободной энергией.

В условиях клетки белки могут самопроизвольно денатурировать, хотя и с меньшей скоростью, чем при высокой температуре. Самопроизвольная ренативация белков в клетке затруднена, так как из-за высокой концентрации существует большая вероятность агрегации частично денатурированных молекул.

В клетках имеются белки - молекулярные шапероны, которые обладают способностью связываться с частично денатурированными, находящимися в неустойчивом, склонном к агрегации состоянии белками и восстанавливать их нативную конформацию. Вначале эти белки были обнаружены как белки теплового шока, так как их синтез усиливался при стрессовых воздействиях на клетку, например, при повышении температуры. Шапероны классифицируются по массе субъединиц: hsp-60, hsp-70 и hsp-90. Каждый класс включает семейство родственных белков.

Молекулярные шапероны (hsp-70) высококонсервативный класс белков, находящийся во всех отделах клетки: цитоплазме, ядре, эндоплазматическом ретикулуме, митохондриях. На С-конце единственной полипептидной цепи hsp-70 имеет участок, который представляет собой бороздку, способную взаимодействовать с пептидами длиной 7-9 аминокис-лотных остатков, обогащенных гидрофобными радикалами. Такие участки в глобулярных белках встречаются примерно через каждые 16 аминокислот. Hsp-70 способны защищать белки от температурной инактивации и восста-навливать конформацию и активность частично денатурированных белков.

Шапероны-60 (hsp-60) участвуют в формировании третичной структуры белков. Hsp-60 функционируют в виде олигомерных белков, состоящих из 14 субъединиц. Hsp-60 образуют два кольца, каждое кольцо состоит из 7 субъединиц, соединенных друг с другом.

Каждая субъединица состоит из трех доменов:

Апикальный домен имеет ряд гидрофобных аминокислотных остатков, обращенных внутрь полости, формируемой субъединицами;

Экваториальный домен обладает АТФазной активностью, необходим для высвобождения белка из шаперонинового комплекса;

Промежуточный домен соединяет апикальный и экваториальный домены.

Белок, имеющий на своей поверхности фрагменты , обогащенные гидрофобными аминокислотами, попадает в полость шаперонинового комплекса. В специфической среде этой полости в условиях изолированности от других молекул цитозоля клетки выбор возможных конформаций белка происходит до тех пор, пока не будет найдена энергетически более выгодная конформация. Шаперонзависимое формирование нативной конформации связано с расходованием значительного количества энергии, источником которой служит АТФ.

Форма белковой молекулы . Исследования нативной конформации белковых молекул показали, что эти частицы в большинстве случаев имеют более или менее асимметричную форму. В зависимости от степени асимметрии, т. е. соотношения между длинной (b) и короткой (а) осями белковой молекулы различают глобулярные (шаровидные) и фибриллярные (нитевидные) белки.

Глобулярными являются белковые молекулы, у которых свертывание полипептидных цепочек привело к образованию сферической структуры. Среди них встречаются строго шаровидные, эллипсовидные и палочкообразные. Они различаются по степени асимметрии. Например, яичный альбумин имеет b/а = 3, глиадин пшеницы - 11, а зеин кукурузы - 20. Многие белки в живой природе являются глобулярными.

Фибриллярные белки образуют длинные высокоасимметричные нити. Многие из них выполняют структурную или механическую функцию. Таковы коллаген (b/а — 200), кератины, фиброин.

Белкам каждой из групп присущи свои характерные свойства. Многие глобулярные белки растворимы в воде и разбавленных солевых растворах. Растворимым фибриллярным белкам свойственны очень вязкие растворы. Глобулярные белки, как правило, обладают хорошей биологической ценностью - усваиваются в процессе пищеварения, в то время как многие фибриллярные белки - нет.

Между глобулярными и фибриллярными белками отсутствует четкая граница. Ряд белков занимает промежуточное положение и сочетает в себе признаки как глобулярных, так и фибриллярных. К таким белкам относятся, например, миозин мышц (b/а = 75) и фибриноген крови (b/а = 18). Миозин имеет палочковидную форму, сходную с формой фибриллярных белков, однако, подобно глобулярным белкам, он растворим в солевых растворах. Растворы миозина и фибриногена вязкие. Эти белки усваиваются в процессе пищеварения. В то же время актин - глобулярный белок мышц - не усваивается.

Денатурация белка . Нативная конформация белковых молекул не является жесткой, она довольно лабильна (лат. «labilis» - скользящий) и при ряде воздействий может серьезно нарушаться. Нарушение нативной конформации белка, сопровождающееся изменением его нативных свойств без разрыва пептидных связей, называется денатурацией (лат. «denaturare » - лишать природных свойств) белка.

Денатурация белков может быть вызвана различными при-чинами, приводящими к нарушению слабых взаимодействий, а также к разрыву дисульфидных связей, стабилизирующих их нативную структуру.

Нагревание большинства белков до температуры выше 50°С, а также ультрафиолетовое и другие виды высокоэнергетического облучения усиливают колебания атомов полипептидной цепи, что приводит к нарушению в них различных связей. Денатурацию белка способно вызвать даже механическое встряхивание.

Денатурация белков также происходит вследствие химического воздействия. Сильные кислоты или щелочи влияют на ионизацию кислотных и основных групп, вызывая нарушение ионных и некоторых водородных связей в молекулах белков. Мочевина (H 2 N-CO-NH 2) и органические растворители - спирты, фенолы и др. - нарушают систему водородных связей и ослабляют в белковых молекулах гидрофобные взаимодействия (мочевина - за счет нарушения структуры воды, органические растворители - вследствие установления контактов с неполярными радикалами аминокислот). Меркаптоэтанол разрушает в белках дисульфидные связи. Ионы тяжелых металлов нарушают слабые взаимодействия.

При денатурации происходит изменение свойств белка и, в первую очередь, уменьшение его растворимости. Например, при кипячении белки коагулируют и выпадают из растворов в осадок в виде сгустков (как при варке куриного яйца). Осаждение белков из растворов происходит также под воздействием белковых осадителей, в качестве которых применяют трихлоруксусную кислоту, реактив Барнштейна (смесь гидроксида натрия с сульфатом меди), раствор таннина и др.

При денатурации уменьшается водопоглотительная способность белка, т. е. его способность к набуханию; могут появляться новые химические группы, например: при воздействии мер каптоэтанола - SH-группы. В результате денатурации белок теряет свою биологическую активность.

Хотя первичная структура белка при денатурации не нарушается, изменения являются необратимыми. Однако, например, при постепенном удалении мочевины методом диализа из раствора денатурированного белка происходит его ренатурация: нативная структура белка восстанавливается, а вместе с ней, в той или иной степени, - и его нативные свойства. Такая денатурация называется обратимой .

Необратимая денатурация белков происходит в процессе старения организмов. Поэтому, например, семена растений, даже при оптимальных условиях хранения, постепенно теряют свою всхожесть.

Денатурация белков имеет место при выпечке хлеба, сушке макарон, овощей, в ходе приготовления пищи и т. д. В результате повышается биологическая ценность этих белков, так как в процессе пищеварения легче усваиваются денатурированные (частично разрушенные) белки.

Изоэлектрическая точка белка . В белках содержатся раз-личные основные и кислотные группы, которые обладают способностью к ионизации. В сильнокислой среде активно протонируются основные группировки (аминогруппы и др.), и молекулы белка приобретают суммарный положительный заряд, а в сильнощелочной среде - легко диссоциируют карбоксильные группы, и молекулы белка приобретают суммарный отрицательный заряд.

Источниками положительного заряда в белках выступают боковые радикалы остатков лизина, аргинина и гистидина, а-аминогруппа остатка N-концевой аминокислоты. Источники отрицательного заряда - боковые радикалы остатков аспарагиновой и глутаминовой кислот, а-карбоксильная группа остатка С-концевой аминокислоты.

При определенном значении рН среды наблюдается равенство положительных и отрицательных зарядов на поверхности белковой молекулы, т. е. ее суммарный электрический заряд оказывается равным нулю. Такое значение рН раствора, при котором молекула белка электронейтральна, называют изоэлектрической точкой белка (pi).

Изоэлектрические точки являются характерными константами белков. Они определяются их аминокислотным составом и структурой: количеством и расположением остатков кислых и основных аминокислот в полипептидных цепях. Изоэлектрические точки белков, в которых преобладают остатки кислых аминокислот, располагаются в области рН<7, а белков, в которых преобладают остатки основных аминокислот - в области рН>7. Изоэлектрические точки большинства белков находятся в слабокислой среде.

В изоэлектрическом состоянии растворы белков обладают минимальной вязкостью. Это связано с изменением формы белковой молекулы. В изоэлектрической точке разноименно заряженные группы притягиваются друг к другу, и белки закручиваются в клубки. При смещении рН от изоэлектрической точки одноименно заряженные группы отталкиваются, и молекулы белка развертываются. В развернутом состоянии белковые молекулы придают растворам более высокую вязкость, чем свернутые в клубки.

В изоэлектрической точке белки обладают минимальной растворимостью и могут легко выпадать в осадок.

Однако осаждения белков в изоэлектрической точке все же не происходит. Этому препятствуют структурированные молекулы воды, удерживающие на поверхности белковых глобул значительную часть гидрофобных аминокислотных радикалов.

Осадить белки можно с помощью органических растворителей (спирта, ацетона), нарушающих систему гидрофобных контактов в молекулах белка, а также высоких концентраций солей (методом высаливания), уменьшающих гидратацию белковых глобул. В последнем случае часть воды идет на растворение соли и перестает участвовать в растворении белка. Такой раствор за недостатком растворителя становится пересыщенным, что влечет за собой выпадение части его в осадок. Белковые молекулы начинают слипаться и, образуя все более крупные частицы, постепенно осаждаться из раствора.

Оптические свойства белка . Растворы белков обладают оптической активностью, т. е. способностью вращать плоскость поляризации света. Это свойство белков обусловлено наличием в их молекулах элементов асимметрии - асимметрических атомов углерода и правозакрученной а-спирали.

При денатурации белка происходит изменение его оптических свойств, что связано с разрушением а-спирали. Оптические свойства полностью денатурированных белков зависят только от наличия в них асимметрических атомов углерода.

По разнице в проявлении белком оптических свойств до и после денатурации можно определить степень его спирализации.

Качественные реакции на белки . Для белков характерны цветные реакции, обусловленные наличием в них тех или иных химических группировок. Эти реакции часто используются для обнаружения белков.

При добавлении к белковому раствору сульфата меди и щелочи появляется сиреневое окрашивание, связанное с образованием комплексов ионов меди с пептидными группами белка. Поскольку эту реакцию дает биурет (H 2 N-CO-NH-CO-NH 2), она получила название биуретовой. Ее часто используют для количественного определения белка, наряду с методом И. Кьельдаля, так как интенсивность возникающей окраски пропорциональна концентрации белка в растворе.

При нагревании растворов белков с концентрированной азотной кислотой появляется желтое окрашивание, обусловленное образованием нитропроизводных ароматических аминокислот. Эту реакцию называют ксантопротеиновой (греч. «ксантос» - желтый).

Многие белковые растворы при нагревании вступают в реакцию с азотнокислым раствором ртути, которая образует с фенолами и их производными комплексные соединения малинового цвета. Это качественная реакция Миллона на тирозин.

В результате нагревания большинства белковых растворов с уксуснокислым свинцом в щелочной среде выпадает черный осадок сульфида свинца. Данная реакция используется для обнаружения серосодержащих аминокислот и называется реакцией Фоля.

Белки

– биополимеры, мономерами которых служат α-аминокислоты, связанные между собой пептидными связями.
Выделяют аминокислоты гидрофобные и гидрофильные , которые, в свою очередь, делятся на кислые, основные и нейтральные. Особенностью a-аминокислот является их способность взаимодействовать друг с другом с образованием пептидов.
Выделяют:

  1. дипептиды (карнозин и ансерин , локализующиеся в митохондриях; будучи АО, предотвращающие их набухание);

  2. олигопептиды, включающие до 10 аминокислотных остатков. Например: трипептид глутатион служит одним из главных восстановителей в АРЗ, которая регулирует интенсивность ПОЛ. Вазопрессин и окситоцин — гормоны задней доли гипофиза, включают 9 аминокислот.

  3. Существуют полипептид ы и в зависимости от проявляемых ими свойств их относят к различного класса соединениям. Медики считают, если парентеральное введение полипептида вызывает отторжение (аллергическую реакцию), то его следует считать белком ; если же подобного явления не наблюдается, то термин остаётся прежним (полипептид ). Гормон аденогипофиза АКТГ , влияющий на секрецию ГКС в коре надпочечников, относят к полипептидам (39 аминокислот), а инсулин , состоящий из 51 мономера и способный спровоцировать иммунный ответ, — протеин.

Уровни организации белковой молекулы.

Любой полимер стремится принять более энергетически выгодную конформацию, которая удерживается за счёт образования добавочных связей, что осуществляется с помощью группировок радикалов аминокислот. Принято выделять четыре уровня структурной организации протеинов. Первичная структура – последовательность аминокислот в полипептидной цепи, ковалентно связанных пептидными (амидными ) связями, а соседние радикалы находятся под углом 180 0 (транс-форма). Наличие более 2-х десятков различных протеиногенных аминокислот и способность их связываться в разной последовательности и обусловливает многообразие белков в природе и выполнение ими самых различных функций. Первичная структура протеинов отдельного человека генетически заложена и передаётся от родителей с помощью полинуклеотидов ДНК и РНК. В зависимости от природы радикалов и с помощью специальных белков – шаперонов синтезируемая полипептидная цепь укладывается в пространстве – фолдинг белков .

Вторичная структура белка имеет вид спирали либо β-складчатого слоя. Фибриллярные белки (коллаген, эластин) имеют бета-структуру . Чередование спирализованных и аморфных (неупорядоченных) участков позволяет им сближаться и с помощью шаперонов формируют более плотно упакованную молекулу — третичную структуру.

Объединение нескольких полипептидных цепей в пространстве и создание в функциональном отношении макромолекулярного образования формирует четвертичную структуру белка. Такие мицеллы принято называть олиго- или мультимерами , а их компоненты – субъединицами (протомерами ). Белок с четвертичной структурой обладает биологической активностью только при условии, если все субъединицы его связаны между собой.

Таким образом, любой природный протеин характеризуется уникальной организацией, которая и обеспечивает его физико-химические, биологические и физиологические функции.

Физико-химические свойства.

Белки обладают большими размерами и высокой молекулярной массой, которая колеблется от 6000 – 1000000 Дальтон и выше в зависимости от количества аминокислот и числа протомеров. Молекулы их имеют различные формы: фибриллярную – в ней сохраняется вторичная структура; глобулярную – имеющую более высокую организацию; и смешанную. Растворимость белков зависит от размеров и формы молекулы, от природы радикалов аминокислот. Глобулярные белки хорошо растворимы в воде, а фибриллярные или мало- или не растворимы.

Свойства белковых растворов: имеют низкое осмотическое, но высокое онкотическое давление; высокую вязкость; слабую способность к диффузии; часто мутные; опалесцируют (явление Тиндаля ), — всё это используется при выделении, очистке, изучении нативных белков. В основе разделения компонентов биологической смеси лежит их осаждение. Обратимое осаждение называют высаливанием , развивающимся при действии солей щелочных металлов, солей аммония, разбавленных щелочей и кислот. Его используют для получения чистых фракций, сохранивших нативные структуру и свойства.

Степень ионизации белковой молекулы и её стабильность в растворе определяются рН среды. Значение рН раствора, при котором заряд частицы стремится к нулю, называют изоэлектрической точкой . Такие молекулы способны перемещаться в электрическом поле; скорость движения прямо пропорциональна величине заряда и обратно пропорциональна массе глобулы, что лежит в основе электрофореза для разделения белков сыворотки.

Необратимое осаждение — денатурация . Если реагент проникает вглубь мицеллы и разрушает добавочные связи, уложенная компактно нить разворачивается. Сближающиеся молекулы за счёт высвободившихся группировок склеиваются и выпадают в осадок или флотируют и теряют свои биологические свойства. Денатурирующие факторы: физические (температура выше 40 0 , различные виды излучений: рентгеновское, α-, β-, γ, УФЛ); химические (концентрированные кислоты, щёлочи, соли тяжёлых металлов, мочевину, алкалоиды, некоторые лекарства, яды). Денатурация применяется в асептике и антисептике, а также в биохимических исследованиях.

Белки обладают различными свойствами (Табл. 1.1).

Таблица 1.1

Биологические свойства протеинов

Специфичность обусловливается уникальным аминокислотным составом каждого белка, что детерминировано генетически и обеспечивает адаптацию организма к изменяющимся условиям внешней среды, но с другой стороны — требует учитывать этот факт при переливании крови, трансплантации органов и тканей.
Лигандность способность радикалов аминокислот образовывать связи с различными по природе веществами (лигандами ): углеводами, липидами, нуклеотидами, минеральными соединениями. Если связь прочная, то этот комплекс, называемый сложным белком , выполняет предназначенные для него функции.
Кооперативность характерна для белков, имеющих четвертичную структуру. Гемоглобин состоит из 4-х протомеров, каждый из которых соединён с гемом, способным связываться с кислородом. Но гем первой субъединицы это делает медленно, а каждый последующий – легче.
Полифункциональность свойство одного белка выполнять самые разные функции. Миозин – сократительный протеин мышц обладает также каталитической активностью, гидролизуя при необходимости АТФ. Вышеназванный гемоглобин тоже способен работать ферментом — каталазой.
Комплементарность Все белки так укладываются в пространстве, что формируются участки, комплементарные другим соединениям, что обеспечивает выполнение различных функций (образование комплексов энзим-субстрат, гормон-рецептор, антиген-антитело.

Классификация белков

Выделяют простые белки , состоящие только из аминокислот, и сложные , включающие простетическую группу . Простые белки делятся на глобулярные и фибриллярные , а также в зависимости от аминокислотного состава на основные, кислые, нейтральные . Глобулярные основные белки — протамины и гистоны . Имеют низкую молекулярную массу, за счет наличия аргинина и лизина у них резко выражена основность, благодаря «-» заряду, легко взаимодействуют с полианионами нуклеиновых кислот. Гистоны, связываясь с ДНК, помогают компактно укладываться в ядре и регулировать синтез белка. Эта фракция гетерогенна и при взаимодействии друг с другом, образуют нуклеосомы , на которые наматываются нити ДНК.

К кислым глобулярным белкам принадлежат альбумины и глобулины , содержащиеся во внеклеточных жидкостях (плазме крови, ликворе, лимфе, молоке) и отличающиеся по массе и размерам. Альбумины имеют молекулярную массу 40-70 тыс. Д в отличие от глобулинов (свыше 100 тыс.Д). Первые включают глутаминовую кислоту, что создаёт большой «-» заряд и гидратную оболочку, позволяющую иметь высокую стабильность их раствора. Глобулины — менее кислые белки, поэтому легко высаливаются и являются гетерогенными, с помощью электрофореза делятся на фракции. Способны связываться с различными соединениями (гормонами, витаминами, ядами, лекарствами, ионами), обеспечивая их транспорт. С их помощью стабилизируются важные параметры гомеостаза: рН и онкотическое давление. Выделяют также иммуноглобулины (IgA, IgM, IgD, IgE, IgG), которые служат антителами, а также белковые факторы свёртывания крови.

В клинике используют так называемый белковый коэффициент (БК) , представляющий отношение концентрации альбуминов к концентрации глобулинов:

Его величины колеблются в зависимости от патологических процессов.

Фибриллярные белки делят на две группы: растворимые (актин, миозин, фибриноген) и нерастворимые в воде и водно-солевых растворах (белки опорных — коллаген, эластин, ретикулин и покровных — кератин тканей).

В основе классификации сложных белков лежат особенности строения простетической группы. Металлопротеин ферритин , богатый катионами железа, и локализующийся в клетках системы мононуклеарных фагоцитов (гепатоцитах, спленоцитах, клетках костного мозга), является депо данного металла. Избыток железа приводит к накоплению в тканях – гемосидерина , провоцируя развитие гемосидероза . Металлогликопротеиины — трансферрин и церулоплазмин плазмы крови, служащие транспортными формами ионов железа и меди соответственно, выявлена их антиоксидантная активность. Работа многих ферментов зависит от наличия в молекулах ионов металлов: для ксантиндегидрогеназы — Мо ++ , аргиназы – Mn ++ , а алкогольДГ – Zn ++ .

Фосфопротеины – казеиноген молока, вителлин желтка и овальбумин белка яиц, ихтулин икры рыб. Играют важную роль в развитии зародыша, плода, новорождённого: их аминокислоты необходимы для синтеза собственных белков тканей, а фосфат используется или как звено ФЛ – обязательных структур мембран клеток, или как важнейший компонент макроэргов – источников энергии в генезе различных соединений. За счет фосфорилирования-дефосфорилирования ферменты регулируют свою активность.

В состав нуклеопротеинов входят ДНК и РНК. В качестве апопротеинов выступают гистоны или протамины. Любая хромосома – это комплекс одной молекулы ДНК с многими гистонами. С помощью нуклеосом происходит накручивание нити данного полинуклеотида, что уменьшает его объём.

Гликопротеины включают в свой состав различные углеводы (олигосахариды, ГАГ типа гиалуроновой кислоты, хондроитин-, дерматан-, кератан-, гепарансульфатов). Слизь, богатая гликопротеинами, обладает высокой вязкостью, защищая стенки полых органов от действия раздражителей. Гликопротеины мембран обеспечивают межклеточные контакты, работу рецепторов, в плазмолеммах эритроцитов отвечают за группоспецифичность крови. Антитела (олигосахариды) взаимодействуют с конкретными антигенами. В основе функционирования интерферонов, системы комплемента лежит тот же принцип. Церулоплазмин и трансферрин, транспортирующие в плазме крови ионы меди и железа, являются тоже гликопротеинами. К этому классу белков принадлежат некоторые гормоны аденогипофиза.

Липопротеины в составе простетической группы содержат различные липиды (ТАГ, свободный ХС, его эфиры, ФЛ). Несмотря на присутствие самых различных веществ, принцип строения мицелл ЛП сходен (Рис. 1.1). Внутри данной частицы находится жировая капля, содержащая неполярные липиды: ТАГ и эфиры ХС. Снаружи ядро окружено однослойной мембраной, образованной ФЛ, белком (аполипопротеином) и ХС. Некоторые белки интегральны и не могут быть отделены от липопротеина, а другие способны переноситься от одного комплекса к другому. Полипептидные фрагменты формируют структуру частицы, взаимодействуют с рецепторами на поверхности клеток, определяя, каким тканям он необходим, служат ферментами или их активаторами, модифицирующими ЛП. Методом ультрацентрифугирования выделили следующие типы липопротеинов: ХМ, ЛПОНП, ЛППП, ЛПНП, ЛПВП . Каждый из типов ЛП образуется в разных тканях и обеспечивает транспорт определённых липидов в биологических жидкостях. Молекулы этих протеинов хорошо растворимы в крови, т.к. имеют небольшие размеры и отрицательный заряд на поверхности. Часть ЛП способна легко диффундировать через интиму артерий, питая её. Хиломикроны служат перевозчиками экзогенных липидов, продвигаясь сначала по лимфе, а затем по кровотоку. По мере продвижения ХМ теряют свои липиды, отдавая их клеткам. ЛПОНП служат основными транспортными формами синтезированных в печени липидов, в основном ТАГ, а доставка эндогенного ХС из гепатоцитов к органам и тканям осуществляется ЛПНП . По мере того, как они отдают липиды клеткам–мишеням, плотность их увеличивается (преобразуются в ЛППП ). Катаболическая фаза обмена ХС осуществляется ЛПВП , которые переносят его из тканей в печень, откуда он в составе желчи выводится через ЖКТ из организма.

У хромопротеинов простетической группой может быть вещество, имеющее окраску. Подкласс — гемопротеиды , небелковой частью служит гем . Гемоглобин эритроцитов обеспечивает газообмен, имеет четвертичную структуру, состоит из 4-х разных у эмбриона, плода, ребёнка полипептидных цепей (Раздел IV. Глава 1). В отличие от Hb миоглобин имеет один гем и одну полипептидную цепь, свёрную в глобулу. Сродство миоглобина к кислороду выше, чем у гемоглобина, поэтому он способен принимать газ, депонировать и отдавать митохондриям по мере необходимости. К гемсодержащим белкам относятся каталаза, пероксидаза , являющиеся ферментами АРЗ; цитохромы – компоненты ЭТЦ, отвечающей за основной биоэнергетический процесс в клетках. Среди дегидрогеназ, участников тканевого дыхания, находят флавопротеины – хромопротеины, имеющие жёлтую (flavos — жёлтый) окраску за счёт наличия в них флавоноидов – компонентов ФМН и ФАД. Родопсин – сложный белок, простетической группой которого служит активная форма витамина А – ретинол жёлто-оранжевого цвета. Зрительный пурпур – основное светочувствительное вещество палочек сетчатки глаза, обеспечивает восприятие света в сумерках.

Функции белков

Структурная

(пластическая)

Протеины составляют основу клеточных и органоидных мембран, а также составляют основу ткани (коллаген в соединительной ткани).
Каталитическая Все ферменты – белки — биокатализаторы.
Регуляторная Многие гормоны, секретируемые передней долей гипофиза, паращитовидными железами имеют белковую природу.
Транспортная В плазме крови альбумины обеспечивают перенос ВЖК, билирубина. Трансферрин отвечает за доставку катионов железа.
Дыхательная Мицеллы гемоглобина , локализующиеся в эритроцитах, способны связываться с различными газами, в первую очередь, с кислородом, углекислотой, участвуя непосредственно в газообмене.
Сократительная Специфические белки миоцитов (актин и миозин ) — участники сокращения и расслабления. Подобный эффект в момент расхождения хромосом при митозе проявляет протеин цитоскелета тубулин .
Защитная Белковые факторы свёртывания крови защищают организм от неадекватных кровопотерь. Иммунные белки (γ-глобулины, интерферон, протеины системы комплемента) борются с поступающими в организм чужеродными веществами – антигенами .
Гомеостатическая Вне- и внутриклеточные белки могут удерживать на постоянном уровне рН (буферные системы ) и онкотическое давление среды.
Рецепторная Гликопротеины клеточных и органоидных мембран, локализуясь на наружных участках, воспринимают различные сигналы регуляции.
Зрительная Зрительные сигналы в сетчатке принимает белок – родопсин .
Питательная Альбумины и глобулины плазмы крови служат резервами аминокислот
Белки хромосом (гистоны, протамины ) участвуют в создании баланса экспрессии и репрессии генетической информации.
Энергетическая При голодании или патологических процессах, когда нарушается использование углеводов с энергетической целью (при сахарном диабете) усиливается тканевой протеолиз, продукты которого аминокислоты (кетогенные ), распадаясь, служат источниками энергии.

Прежде чем рассказать про свойства белков, стоит дать краткое определение данному понятию. Это высокомолекулярные органические вещества, которые состоят из соединенных пептидной связью альфа-аминокислот. Белки являются важной частью питания человека и животных, поскольку не все аминокислоты вырабатываются организмом - некоторые поступают именно с едой. Каковы же их свойства и функции?

Амфотерность

Это первая особенность белков. Под амфотерностью подразумевается их способность проявлять как кислотные, так и основные свойства.

Белки в своей структуре имеют несколько видов химических группировок, которые способны ионизировать в растворе Н 2 О. К таковым относятся:

  • Карбоксильные остатки. Глутаминовая и аспарагиновая кислоты, если быть точнее.
  • Азотсодержащие группы. ε-аминогруппа лизина, аргининовый остаток CNH(NH 2) и имидазольный остаток гетероциклической альфа-аминокислоты под названием гистидин.

У каждого белка имеется такая особенность, как изоэлектрическая точка. Под данным понятием понимают кислотность среды, при которой поверхность или молекула не имеет электрического заряда. При таких условиях сводится к минимуму гидратация и растворимость белка.

Показатель определяется соотношением основных и кислых аминокислотных остатков. В первом случае точка приходится на щелочную область. Во втором - на кислую.

Растворимость

По данному свойству белки подразделяются на небольшую классификацию. Вот какими они бывают:

  • Растворимыми . Их называют альбуминами. Они умеренно растворяются в концентрированных соляных растворах и сворачиваются при нагревании. Эта реакция называется денатурацией. Молекулярная масса альбуминов составляет около 65 000. В них нет углеводов. А вещества, которые состоят из альбумина, именуются альбуминоидами. К таковым относится яичный белок, семена растений и сыворотка крови.
  • Нерастворимыми . Их называют склеропротеинами. Яркий пример - кератин, фибриллярный белок с механической прочностью, уступающей только хитину. Именно из этого вещества состоят ногти, волосы, рамфотека птичьих клювов и перьев, а также рога носорога. Еще в эту группу белков включены цитокератины. Это структурный материал внутриклеточных филаментов цитоскелета клеток эпителия. Еще к нерастворимым белкам относят фибриллярный белок под названием фиброин.
  • Гидрофильными . Они активно взаимодействуют с водой и впитывают ее. К таковым относятся белки межклеточного вещества, ядра и цитоплазмы. В том числе пресловутый фиброин и кератин.
  • Гидрофобными . Они отталкивают воду. К ним относятся белки, являющиеся составляющими биологических мембран.

Денатурация

Так называется процесс видоизменения белковой молекулы под воздействием определенных дестабилизирующих факторов. При этом аминокислотная последовательность остается той же. Но белки теряют их естественные свойства (гидрофильность, растворимость и другие).

Стоит отметить, что любое весомое изменение внешних условий способно привести к нарушениям структур белка. Чаще всего денатурацию провоцирует повышение температуры, а также оказываемое на белок воздействие щелочи, сильной кислоты, радиации, соли тяжелых металлов и даже определенных растворителей.

Интересно, что нередко денатурация приводит к тому, что частицы белка агрегатируются в более крупные. Ярким примером является, например, яичница. Всем ведь знакомо, как в процессе жарки белок образуется из прозрачной жидкости.

Еще следует рассказать о таком явлении, как ренатурация. Этот процесс обратен денатурации. Во время него белки возвращаются к природной структуре. И это действительно возможно. Группа химиков из США и Австралии нашла способ, с помощью которого можно ренатурировать сваренное вкрутую яйцо. Уйдет на это всего несколько минут. А потребуется для этого мочевина (диамид угольной кислоты) и центрифугирование.

Структура

О ней необходимо сказать в отдельности, раз речь идет о значении белков. Всего выделяют четыре уровня структурной организации:

  • Первичная . Подразумевается последовательность остатков аминокислот в цепи полипептидов. Главная особенность - это консервативные мотивы. Так называются устойчивые сочетания остатков аминокислот. Они есть во многих сложных и простых белках.
  • Вторичная . Имеется в виду упорядочивание какого-либо локального фрагмента цепи полипептидов, которое стабилизируют водородные связи.
  • Третичная . Так обозначается пространственное строение цепи полипептидов. Состоит данный уровень из некоторых вторичных элементов (их стабилизируют разные типы взаимодействий, где гидрофобные являются важнейшими). Здесь в стабилизации участвуют ионные, водородные, ковалентные связи.
  • Четвертичная . Ее еще называют доменной или субъединичной. Данный уровень состоит из взаимного расположения цепей полипептидов в составе цельного белкового комплекса. Интересно, что в состав белков с четвертичной структурой входят не только идентичные, но еще и отличающиеся цепочки полипептидов.

Данное деление было предложено датским биохимиком по имени К. Линдстрем-Ланг. И пусть считается, что оно устарело, пользоваться им все равно продолжают.

Типы строения

Рассказывая про свойства белков, следует также отметить, что эти вещества делятся на три группы в соответствии с типом строения. А именно:

  • Фибриллярные белки. Они имеют нитевидную вытянутую структуру и большую молекулярную массу. Большинство из них не растворяется в воде. Структура этих белков стабилизируется взаимодействиями между полипептидными цепями (они состоят как минимум из двух остатков аминокислот). Именно фибриллярные вещества образуют полимер, фибриллы, микротрубочки и микрофиламенты.
  • Глобулярные белки. Вид структуры обуславливает их растворимость в воде. А общая форма молекулы отличается сферичностью.
  • Мембранные белки. Строение этих веществ имеет интересную особенность. У них есть домены, которые пересекают клеточную мембрану, но их части выступают в цитоплазму и межклеточное окружение. Эти белки играют роль рецепторов - передают сигналы и отвечают за трансмембранную транспортировку питательных веществ. Важно оговориться, что они весьма специфичны. Каждый белок пропускает лишь определенную молекулу или сигнал.

Простые

О них тоже можно рассказать чуть подробнее. Простые белки состоят лишь из цепей полипептидов. К ним относятся:

  • Протамин . Ядерный низкомолекулярный белок. Его присутствие является защитой ДНК от действия нуклеаз - ферментов, атакующих нуклеиновые кислоты.
  • Гистоны . Сильноосновные простые белки. Они сосредоточены в ядрах клеток растений и животных. Принимают участие в «упаковке» ДНК-нитей в ядре, а еще в таких процессах, как репарация, репликация и транскрипция.
  • Альбумины . О них уже говорилось выше. Самые известные альбумины - сывороточный и яичный.
  • Глобулин . Участвует в свертывании крови, а также в других иммунных реакциях.
  • Проламины . Это запасные белки злаков. Названия у них всегда разные. У пшеницы они именуются птиалинами. У ячменя - гордеинами. У овса - авснинами. Интересно, что проламины делятся на свои классы белков. Их всего две: S-богатые (с содержанием серы) и S-бедные (без нее).

Сложные

Что касательно сложных белков? Они содержат простетические группы или те, в которых нет аминокислот. К ним относятся:

  • Гликопротеины . В их состав входят углеводные остатки с ковалентной связью. Эти сложные белки - важнейший структурный компонент клеточных мембран. К ним относятся также многие гормоны. А еще гликопротеины эритроцитовых мембран определяют группу крови.
  • Липопротеины . Состоят из липидов (жироподобных веществ) и играют роль «транспорта» данных веществ в крови.
  • Металлопротеиды . Эти белки в организме имеют огромное значение, так как без них не протекает обмен железа. В состав их молекул входят ионы металлов. А типичными представителями данного класса являются трансферрин, гемосидерин и ферритин.
  • Нуклеопротеиды . Состоят из РКН и ДНК, не имеющих ковалентной связи. Яркий представитель - хроматин. Именно в его составе реализуется генетическая информация, репарируется и реплицируется ДНК.
  • Фосфопротеины . Их составляют остатки фосфорной кислоты, связанные ковалентно. В качестве примера можно привести казеин, который изначально содержится в молоке, как соль кальция (в связанном виде).
  • Хромопротеиды . У них простое строение: белок и окрашенный компонент, относящийся к простетической группе. Они принимают участие в клеточном дыхании, фотосинтезе, окислительно-восстановительных реакциях и т. д. Также без хромопротеидов не происходит аккумулирование энергии.

Обмен веществ

Выше уже было многое рассказано про физико-химические свойства белков. Об их роли в обмене веществ тоже нужно упомянуть.

Есть аминокислоты, являющиеся незаменимыми, поскольку они не синтезируются живыми организмами. Млекопитающие сами получают их из пищи. В процессе ее переваривания белок разрушается. Начинается этот процесс с денатурации, когда его помещают в кислотную среду. Затем - гидролиз, в котором участвуют ферменты.

Определенные аминокислоты, которые в итоге получает организм, участвуют в процессе синтеза белков, свойства которых необходимы для его полноценного существования. А оставшаяся часть перерабатывается в глюкозу - моносахарид, являющийся одним из основных источников энергии. Белок очень важен в условиях диет или голодания. Если он не будет поступать вместе с едой - организм начнет «есть себя» - перерабатывать собственные белки, особенно мускульные.

Биосинтез

Рассматривая физико-химические свойства белков, нужно заострить внимание и на такой теме, как биосинтез. Эти вещества формируются на основе той информации, которая закодирована в генах. Любой белок - это уникальная последовательность остатков аминокислот, определяемая геном, кодирующим его.

Как это происходит? Ген, кодирующий белок, переносит информацию с ДНК на РНК. Это называется транскрипцией. В большинстве случаев синтез затем происходит на рибосомах - это важнейший органоид живой клетки. Данный процесс именуется трансляцией.

Есть еще так называемый нерибосомный синтез. Его тоже стоит упомянуть, раз речь идет о значении белков. Этот вид синтеза наблюдается у некоторых бактерий и низших грибов. Процесс осуществляется посредством высокомолекулярного белкового комплекса (известен как NRS-синтаза), и рибосомы в этом участия не принимают.

И, конечно же, существует еще химический синтез. С его помощью можно синтезировать короткие белки. Для этого используются методы вроде химического лигирования. Это противоположность пресловутого биосинтеза на рибосомах. Таким же методом удается получить ингибиторы определенных ферментов.

К тому же благодаря химическому синтезу можно вводить в состав белков те остатки аминокислот, которые в обычных веществах не встречаются. Допустим те, у боковых цепей которых есть флюоресцентные метки.

Стоит оговориться, что методы химического синтеза не безупречны. Есть определенные ограничения. Если в белке содержится более 300 остатков, то искусственно синтезированное вещество, скорее всего, получит неправильную структуру. А это отразится на свойствах.

Вещества животного происхождения

Их рассмотрению необходимо уделить особое внимание. Животный белок - это вещество, содержащийся в яйцах, мясе, молочных продуктах, птице, морепродуктах и рыбе. В них имеются все аминокислоты, необходимые организму, в том числе и 9 незаменимых. Вот целый ряд важнейших функций, которые выполняет животный белок:

  • Катализ множества химических реакций. Данное вещество запускает их и ускоряет. За это «ответственны» ферментативные белки. Если в организм не будет поступать их достаточное количество, то окисление и восстановление, соединение и разрыв молекулярных связей, а также транспортировка веществ не будут протекать полноценно. Интересно, что лишь малая часть аминокислот вступают в различного рода взаимодействия. И еще меньшее количество (3-4 остатка) непосредственно задействовано в катализе. Все ферменты делят на шесть классов - оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Каждый из них отвечает за ту или иную реакцию.
  • Формирование цитоскелета, образующего структуру клеток.
  • Иммунная, химическая и физическая защита.
  • Транспортировка важных компонентов, необходимых для роста и развития клеток.
  • Передача электрических импульсов, важных для работы всего организма, поскольку без них невозможно взаимодействие клеток.

И это далеко не все возможные функции. Но даже так понятна значимость данных веществ. Синтез белка в клетках и в организме невозможен, если человек не будет употреблять в пищу его источники. А ими является мясо индейки, говядина, баранина, крольчатина. Еще много белка содержится в яйцах, сметане, йогурте, твороге, молоке. Также активировать синтез белка в клетках организма можно, добавив в свой рацион ветчину, субпродукты, колбасу, тушенку и телятину.

§ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ

Белки – это очень крупные молекулы, по своим размерам они могут уступать только отдельным представителям нуклеиновых кислот и полисахаридам. В таблице 4 представлены молекулярные характеристики некоторые белков.

Таблица 4

Молекулярные характеристики некоторых белков

Относитель-ная молекулярная масса

Число цепей

Число аминокислотных остатков

Рибонуклеаза

Миоглобин

Химотрипсин

Гемоглобин

Глутамат-дегидрогеназа

В молекулах белков может содержаться самое разное количество аминокислотных остатков - от 50 и до нескольких тысяч; относительные молекулярные массы белков также сильно колеблются - от нескольких тысяч (инсулин, рибонуклеаза) до миллиона (глутаматдегидрогеназа) и более. Число полипептидных цепей в составе белков может составлять от единицы до нескольких десятков и даже тысяч. Так, в состав белка вируса табачной мозаики входит 2120 протомеров.

Зная относительную молекулярную массу белка, можно приблизительно оценить, какое число аминокислотных остатков входит в его состав. Средняя относительная молекулярная масса аминокислот, образующих полипептидную цепь, равна 128. При образовании пептидной связи происходит отщепление молекулы воды, следовательно, средняя относительная масса аминокислотного остатка составит 128 – 18 = 110. Используя эти данные, можно подсчитать, что белок с относительной молекулярной массой 100000 будет состоять приблизительно из 909 аминокислотных остатков.

Электрические свойства белковых молекул

Электрические свойства белков определяются присутствием на их поверхности положительно и отрицательно заряженных аминокислотных остатков. Наличие заряженных группировок белка определяет суммарный заряд белковой молекулы. Если в белках преобладают отрицательно заряженные аминокислоты, то его молекула в нейтральном растворе будет иметь отрицательный заряд, если преобладают положительно заряженные – молекула будет иметь положительный заряд. Суммарный заряд белковой молекулы зависит и от кислотности (рН) среды. При увеличении концентрации ионов водорода (увеличении кислотности) происходит подавление диссоциации карбоксильных групп:

и в то же время увеличивается число протонированных амино-групп;

Таким образом, при увеличении кислотности среды происходит уменьшение на поверхности молекулы белка числа отрицательно заряженных и увеличение числа положительно заряженных групп. Совсем другая картина наблюдается при снижении концентрации ионов водорода и увеличении концентрации гидроксид-ионов. Число диссоциированных карбоксильных групп возрастает

и снижается число протонированных аминогрупп

Итак, изменяя кислотность среды, можно изменить и заряд молекулы белка. При увеличении кислотности среды в молекуле белка снижается число отрицательно заряженных группировок и увеличивается число положительно заряженных, молекула постепенно теряет отрицательный и приобретает положительный заряд. При снижении кислотности раствора наблюдается противоположная картина. Очевидно, что при определенных значениях рН молекула будет электронейтральной, т.е. число положительно заряженных групп будет равно числу отрицательно заряженных групп, и суммарный заряд молекулы будет равен нулю (рис. 14).

Значение рН, при котором суммарный заряд белка равен нулю, называется изоэлектрической точкой и обозначается pI .

Рис. 14. В состоянии изоэлектрической точки суммарный заряд молекулы белка равен нулю

Изоэлектрическая точка для большинства белков находится в области рН от 4,5 до 6,5. Однако есть и исключения. Ниже приведены изоэлектрические точки некоторых белков:

При значениях рН ниже изоэлектрической точки белок несет суммарный положительный заряд, выше – суммарный отрицательный.

В изоэлектрической точке растворимость белка минимальна, так как его молекулы в таком состоянии электронейтральны и между ними нет сил взаимного отталкивания, поэтому они могут «слипаться» за счет водородных и ионных связей, гидрофобных взаимодействий, ван-дер-ваальсовых сил. При значениях рН, отличающихся от рI, молекулы белка будут нести одинаковый заряд - либо положительный, либо отрицательный. В результате этого между молекулами будут существовать силы электростатического отталкивания, препятствующие их «слипанию», растворимость будет выше.

Растворимость белков

Белки бывают растворимые и нерастворимые в воде. Растворимость белков зависит от их структуры, величины рН, солевого состава раствора, температуры и других факторов и определяется природой тех групп, которые находятся на поверхности белковой молекулы. К нерастворимым белкам относятся кератин (волосы, ногти, перья), коллаген (сухожилия), фиброин (щелк, паутина). Многие другие белки растворимы в воде. Растворимость определяется наличием на их поверхности заряженных и полярных группировок (-СОО - , -NH 3 + , -OH и др.). Заряженные и полярные группировки белков притягивают к себе молекулы воды, и вокруг них формируется гидратная оболочка (рис. 15), существование которой обусловливает их растворимость в воде.

Рис. 15. Образование гидратной оболочки вокруг молекулы белка.

На растворимость белка влияет наличие нейтральных солей (Na 2 SO 4 , (NH 4) 2 SO 4 и др.) в растворе. При малых концентрациях солей растворимость белка увеличивается (рис. 16), так как в таких условиях увеличивается степень диссоциации полярных групп и экранируются заряженные группы белковых молекул, тем самым снижается белок-белковое взаимодействие, способствующее образованию агрегатов и выпадению белка в осадок. При высоких концентрациях солей растворимость белка снижается (рис. 16) вследствие разрушения гидратной оболочки, приводящего к агрегации молекул белка.

Рис. 16. Зависимость растворимости белка от концентрации соли

Существуют белки, которые растворяются только в растворах солей и не растворяются в чистой воде, такие белки называют глобулины . Существуют и другие белки – альбумины , они в отличие от глобулинов хорошо растворимы в чистой воде.
Растворимость белков зависит и от рН растворов. Как мы уже отмечали, минимальной растворимостью обладают белки в изоэлектрической точке, что объясняется отсутствием электростатического отталкивания между молекулами белка.
При определенных условиях белки могут образовывать гели. При образовании геля молекулы белка формируют густую сеть, внутреннее пространство которой заполнено растворителем. Гели образуют, например, желатина (этот белок используют для приготовления желе) и белки молока при приготовлении простокваши.
На растворимость белка оказывает влияние и температура. При действии высокой температуры многие белки выпадают в осадок вследствие нарушения их структуры, но об этом более подробно поговорим в следующем разделе.

Денатурация белка

Рассмотрим хорошо нам знакомое явление. При нагревании яичного белка происходит постепенное его помутнение, и затем образуется твердый сгусток. Свернувшийся яичный белок – яичный альбумин – после охлаждения оказывается нерастворимым, в то время как до нагревания яичный белок хорошо растворялся в воде. Такие же явления происходят и при нагревании практически всех глобулярных белков. Те изменения, которые произошли при нагревании, называются денатурацией . Белки в естественном состоянии носят название нативных белков, а после денатурации - денатурированных .
При денатурации происходит нарушение нативной кон-формации белков в результате разрыва слабых связей (ион-ных, водородных, гидрофобных взаимодействий). В результате этого процесса могут разрушаться четвертичная, третичная и вторичные структуры белка. Первичная структура при этом сохраняется (рис. 17).


Рис. 17. Денатурация белка

При денатурации гидрофобные радикалы аминокислот, находящиеся в нативных белках в глубине молекулы, оказываются на поверхности, в результате создаются условия для агрегации. Агрегаты белковых молекул выпадают в осадок. Денатурация сопровождается потерей биологической функции белка.

Денатурация белка может быть вызвана не только повышенной температурой, но и другими факторами. Кислоты и щелочи способны вызвать денатурацию белка: в результате их действия происходит перезарядка ионогенных групп, что приводит к разрыву ионных и водородных связей. Мочевина разрушает водородные связи, следствием этого является потеря белками своей нативной структуры. Денатурирующими агентами являются органические растворители и ионы тяжелых металлов: органические растворители разрушают гидрофобные связи, а ионы тяжелых металлов образуют нерастворимые комплексы с белками.

Наряду с денатурацией существует и обратный процессренатурация. При снятии денатурирующего фактора возможно восстановление исходной нативной структуры. Например, при медленном охлаждении до комнатной температуры раствора восстанавливается нативная структура и биологическая функция трипсина.

Белки могут денатурировать и в клетке при протекании нормальных процессов жизнедеятельности. Совершенно очевидно, что утрата нативной структуры и функции белков – крайне нежелательное событие. В связи с этим следует упомянуть об особых белках – шаперонах . Эти белки способны узнавать частично денатурированные белки и, связываясь с ними, восстанавливать их нативную конформацию. Шапероны также узнают белки, процесс денатурации которых зашел далеко, и транспортируют их в лизосомы, где происходит их расщепление (деградация). Шапероны играют важную роль и в процессе формирования третичной и четвертичной структур во время синтеза белка.

Интересно знать! В настоящее время часто упоминается такое заболевание, как коровье бешенство. Эту болезнь вызывают прионы. Они могут вызывать у животных и человека и другие заболевания, носящие нейродегенеративный характер. Прионы – это инфекционные агенты белковой природы. Прион, попадая в клетку, вызывает изменение конформации своего клеточного аналога, который сам становится прионом. Так возникает заболевание. Прионный белок отличается от клеточного по вторичной структуре. Прионная форма белка имеет в основном b -складчатую структуру, а клеточная – a -спиральную.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.