Фундаментальные исследования. Определение теплопроводности твердых материалов методом плоского слоя Измерение теплопроводности

В процессе их теплового движения. В жидкостях и твердых телах- диэлектриках - перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.

В основной зеком теплопроводности входит ряд математических понятий, оп-ределения которых, целесообразно напомнить и пояснить.

Температурное поле — это со-вокупности значений температуры во всех точках тела в данный момент време-ни. Математически оно описывается ввиде t = f (x, y, z, τ ). Различают стационарное температурное поле, когда температура во всех точках тела не зависит от времени (не изменяется с течением времени), и нестационарное температурное поле . Кроме то-го, если температура изменяется только по одной или двум пространственным координатам, то температурное поле на-зывают соответственно одно- или двух - мерным.

Изотермическая поверхность - это геометрическое место точек, температура в которых одинакова.

Градиент температуры grad t есть вектор, направленный по нор-мали к изотермической поверхности и численно равный производной от тем-пературы по этому направлению.

Согласно основному закону тепло-проводности — закону Фурье (1822 г.), вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален градиенту температуры:

q = - λ grad t , (3)

где λ — коэффициент теплопро-водности вещества; его единица измерения Вт /(м·К ).

Знак минус в уравнении (3) ука-зывает на то, что вектор q направлен противоположно вектору grad t , т.е. в сторону наибольшего уменьшения температуры.

Тепловой поток δQ через произволь-но ориентированную элементарную пло-щадку dF равен скалярному произведе-нию вектора q на вектор элементарной площадки dF , а полный тепловой поток Q через всю поверхность F определяется интегрированием этого произведения по поверхности F:

КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ

Коэффициент теплопроводности λ в законе Фурье (3) характеризует спо-собность данного вещества проводить теплоту. Значения коэффициентов тепло-проводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности λ = q/ grad t равен плотности теплового потока q при градиенте температуры grad t = 1 К/м . Наиболь-шей теплопроводностью обладает легкий газ — водород. При комнатных условиях коэффициент теплопроводности водорода λ = 0,2 Вт /(м·К ). У более тяжелых газов теплопроводность меньше — у воз-духа λ = 0,025 Вт /(м·К ), у диоксида уг-лерода λ = 0,02 Вт /(м·К ).


Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: λ = 400 Вт /(м·К ). Для углеродистых сталей λ = 50 Вт /(м·К ). У жидкостей коэффициент теплопроводности, как правило, меньше 1 Вт /(м·К ). Вода является одним из лучших жидких проводников теплоты, для нее λ = 0,6 Вт /(м·К ).

Коэффициент теплопроводности неметаллических твердых материалов обычно ниже 10 Вт /(м·К ).

Пористые материалы - пробка, различные волокнистые наполнители типа органической ваты - обладают наименьшими коэффициентами теплопроводности λ <0,25 Вт /(м·К ), приближающимся при малой плотности набивки к коэффициенту теплопроводности воздуха, наполняющего поры.

Значительное влияние на коэффициент теплопроводности могут оказывать температура, давление, а у пористых материалов ещё и влажность. В справочниках всегда приводятся условия, при которых определялся коэффициент теплопроводности данного вещества, и для других условий эти данныеиспользовать нельзя. Диапазоны значений λ для различных материалов приведены на рис. 1.

Рис.1. Интервалы значений коэффициентов теплопроводности различных веществ.

Перенос теплоты теплопроводностью

Однородная плоская стенка .

Про-стейшей и очень распространенной за-дачей, решаемой теорией теплообмена, является определение плотности тепло-вого потока, передаваемого через плоскую стенку толщиной δ , на повер-хностях которой поддерживаются темпе-ратуры t w1 и t w2 . (рис.2). Температура изменяется только по толщине пластины - по одной координате х. Такие за-дачи называются одномерными, решения их наиболее просты, и в данном курсе мы ограничимся рассмотрением только од-номерных задач.

Учитывая, что для од-номерного случая :

grad t = dt/dх , (5)

и используя основной закон теплопроводности (2), получаем дифференци-альное уравнение стационарной тепло-проводности для плоской стенки:

В стационарных условиях, когда энергия не расходуется на нагрев, плот-ность теплового потока q неизменна по толщине стенки. В большинстве практи-ческих задач приближенно пред-полагается, что коэффициент тепло-проводности λ не зависит от температуры и одинаков по всей толщине стенки. Зна-чение λ находят в справочниках при температуре:

средней между температурами поверхно-стей стенки. (Погрешность расчетов при этом обычно меньше погрешности исход-ных данных и табличных величин, а при линейной зависимости коэффициента теплопроводности от температуры: λ = а+ bt точная расчетная формула для q не отличается от приближенной). При λ = const :

(7)

т.е. зависимость температуры t от координаты х линейна (рис. 2).

Рис.2. Стационарное распределение темпе-ратуры по толщине плоской стенки.

Разделив переменные в уравнении (7) и проинтегрировав по t от t w1 до t w2 и по х от 0 до δ :

, (8)

получим зависимость для расчета плот-ности теплового потока:

, (9)

или мощность теплового потока (тепловой поток):

(10)

Следовательно, количество теплоты, переданной через 1 м 2 стенки, прямо пропорционально коэффициенту теплопроводности λ и разности температур наружных поверхностей стенки (t w1 - t w2 ) и обратно пропорционально толщине стенки δ . Общее количество теплоты через стенку площадью F еще и пропорционально этой площади.

Полученная простейшая формула (10) имеет очень широкое распространение в тепло-вых расчетах. По этой формуле не только рассчитывают плотности теплового потока через плоские стенки, но и делают оценки для случаев более сложных, уп-рощенно заменяя в расчетах стенки сложной конфигурации на плоскую стенку. Иногда уже на основании оценки тот или иной вариант отвергается без дальней-ших затрат времени на его детальную проработку.

Температура тела в точке х определяется по формуле:

t x = t w1 - (t w1 - t w2) × (x × d)

Отношение λF/δ называется тепло-вой проводимостью стенки, а обратная величина δ/λF тепловым или термическим сопротивлением стенки и обозначается R λ . Пользуясь понятием термического сопро-тивления, формулу для расчета теплово-го потока можно представить в виде:

Зависимость (11) аналогична закону Ома в электротехни-ке (сила электрического тока равна раз-ности потенциалов, деленной на электри-ческое сопротивление проводника, по ко-торому течет ток).

Очень часто термическим сопротив-лением называют величину δ/λ, которая равна термическому сопротивлению плоской стенки площадью 1 м 2 .

Примеры расчетов .

Пример 1 . Определить тепловой поток через бетонную стену здания толщиной 200 мм , высотой H = 2,5 м и длиной 2 м , если температуры на ее поверхностях: t с1 = 20 0 С, t с2 = - 10 0 С, а коэффициент теплопроводно-сти λ =1 Вт /(м·К ):

= 750 Вт .

Пример 2 . Определить коэффициент теплопроводности материала стенки толщиной 50 мм , если плотность теплового потока через нее q = 100 Вт /м 2 , а разность температур на поверхностях Δt = 20 0 С.

Вт /(м·К ).

Многослойная стенка .

Формулой (10) можно воспользоваться и для расчета теплового потока через стенку, состоя-щую из нескольких (n ) плотно прилегающих друг к другу слоев разнородных материа-лов (рис. 3), например, головку цилиндров, прокладку и блока цилиндров, выполненных из разных материалов, и т д.

Рис.3. Распределение температуры по толщине многослойной плоской стенки.

Термическое сопротивление такой стенки равно сумме термических сопротивлений отдельных слоев:

(12)

В формулу (12) нужно подставить разность температур в тех точках (по-верхностях), между которыми «включе-ны» все суммируемые термические сопротивления, т.е. в данном случае: t w1 и t w(n+1) :

, (13)

где i - номер слоя.

При стационарном режиме удельный тепловой поток через многослойную стенку постоянен и для всех слоев одинаков. Из (13) следует:

. (14)

Из уравнения (14) следует, что общее термическое сопротивление многослойной стенки равно сумме сопротивлений каждого слоя.

Формулу (13) легко получить, записав разность температур по формуле (10) для каждого из п слоев многослой-ной стенки и сложив все п выражений с учетом того, что во всех слоях Q имеет одно и то же значение. При сложении все промежуточные температуры сократятся.

Распределение температуры в преде-лах каждого слоя — линейное, однако, в различных слоях крутизна температур-ной зависимости различна, поскольку со-гласно формуле (7) (dt/dx ) i = - q/λ i . Плотность теплового потока, проходяще-го через все слон, в стационарном режи-ме одинакова, а коэффициент теплопро-водности слоев различен, следовательно, более резко температура меняется в сло-ях с меньшей теплопроводностью. Так, в примере на рис.4 наименьшей тепло-проводностью обладает материал второ-го слоя (например, прокладки), а наибольшей — третьего слоя.

Рассчитав тепловой поток через мно-гослойную стенку, можно определить па-дение температуры в каждом слое по соотношению (10) и найти температу-ры на границах всех слоев. Это очень важно при использовании в качестве теплоизоляторов материалов с ограничен-ной допустимой температурой.

Температура слоев определяется по следующей формуле:

t сл1 = t c т1 - q × (d 1 × l 1 -1)

t сл2 = t c л1 - q × (d 2 × l 2 -1)

Контактное термическое сопротивле-ние . При выводе формул для многослойной стенки предполагалось, что слои плотно прилегают друг к другу, и благодаря хорошему контакту соприкасающиеся поверхности разных слоев имеют одну и ту же температуру. Идеально плотный контакт между отдельными слоями многослойной стенки получается, если одни из слоев наносят на другой слой в жидком состоянии или в виде текучего раствора. Твердые тела касаются друг друга только вершинами профилей шеро-ховатостей (рис.4).

Площадь контакта вершин пренебрежимо мала, и весь тепловой по-ток идет через воздушный зазор (h ). Это создает дополнительное (контактное) термическое сопротивление R к . Термические контактные сопротивления, могут быть определены самостоятельно с использованием соответствующих эмпирических зависимостей или экспериментально. Например, термическое сопротивление зазора в 0,03 мм примерно эквивалентно термическому сопро-тивлению слоя стали толщиной около 30 мм .

Рис.4. Изображение контактов двух шерохо-ватых поверхностей.

Методы снижения термического контактного сопротивления. Полное термическое сопротивление контакта определяется чистотой обработки, нагрузкой, теплопроводностью среды, коэффициентами теплопроводности материалов контактирующих деталей и другими факторами.

Наибольшую эффективность снижения термического сопротивления дает введение в контактную зону среды с теплопроводностью, близкой к теплопроводности металла.

Существуют следующие возможности заполнения контактной зоны веществами:

Использование прокладок из мягких металлов;

Введение в контактную зону порошкообразного вещества с хорошей тепловой проводимостью;

Введение в зону вязкого вещества с хорошей тепловой проводимостью;

Заполнение пространства между выступами шероховатостей жидким металлом.

Наилучшие результаты получены при заполнении контактной зоны расплавленным оловом. В этом случае термическое сопротивление контакта практически становится равным нулю.

Цилиндрическая стенка .

Очень часто теплоносители движутся по трубам (цилиндрам), и требуется рассчитать тепловой поток, передаваемый через цилиндрическую стенку трубы (цилиндра). Задача о передаче теплоты через цилиндрическую стенку (при известных и постоянных значениях температуры на внутренней и наружной поверхностях) также является одномерной, если ее рассматри-вать в цилиндрических координатах (рис.4).

Температура изменяется только вдоль радиуса, а по длине трубы l и по ее периметру остается неизменной.

В этом случае уравнение теплового потока имеет вид:

. (15)

Зависимость (15) показывает, что количество теплоты, переданной через стенку цилиндра, прямо пропорционально коэффициенту теплопроводности λ , длине трубы l и температурному напору (t w1 - t w2 ) и обратно пропорционально натуральному логарифму отношения внешнего диаметра цилиндра d 2 к его внутреннему диаметру d 1 .

Рис. 4. Изменение температуры по толщине однослойной цилиндрической стенки.

При λ = const распределение темпера-туры порадиусу r однослойной цилиндрической стенки подчиняется ло-гарифмическому закону (рис. 4).

Пример . Во сколько раз уменьшаются тепловые потери через стенку здания, если между двумя слоями кирпичей толщиной по 250 мм установить прокладку пенопласта толщиной 50 мм . Коэффициенты теплопроводности соответственно равны: λ кирп . = 0,5 Вт /(м·К ); λ пен. . = 0,05 Вт /(м·К ).

Физические методы анализа основаны на использовании какого-либо специфического физического эффекта или определенного физического свойства вещества. Для газового анализа используют плотность, вязкость, теплопроводность, показатель преломления, магнитную восприимчивость, диффузию, абсорбцию, эмиссию, поглощение электромагнитного излучения, а также селективную абсорбцию, скорость звука, тепловой эффект реакции, электрическую проводимость и др. Некоторые из этих физических свойств и явлений делают возможным непрерывный газовый анализ и позволяют достичь высокой чувствительности и точности измерений. Выбор физической величины или явления очень важен для исключения влияния неизмеряемых компонентов, содержащихся в анализируемой смеси. Использование специфических свойств или эффектов позволяет определять концентрацию нужного компонента в многокомпонентной газовой смеси. Неспецифические физические свойства можно использовать, строго говоря, только для анализа бинарных газовых смесей. Вязкость, показатель преломления и диффузия при анализе газов практического значения не имеют.

Передача тепла между двумя точками с различной температурой происходит тремя путями: конвекцией, излучением и теплопроводностью. При конвекции передача тепла связана с переносом материи (массопередачей); передача тепла излучением происходит без участия материи. Передача тепла теплопроводностью происходит с участием материи, но без массопередачи. Передача энергии происходит вследствие соударения молекул. Коэффициент теплопроводности (X ) зависит только от вида вещества, передающего тепло. Он является специфической характеристикой вещества.

Размерность теплопроводности в системе СГС кал/(с см К), в технических единицах - ккалДмч-К), в международной системе СИ - ВтДм-К). Соотношение этих единиц следующее: 1 кал/(см с К) = 360 ккалДм ч К) = = 418,68 ВтДм-К).

Абсолютная теплопроводность при переходе от твердых к жидким и газообразным веществам изменяется от Х = 418,68 ВтДм-К)] (теплопроводности лучшего проводника тепла - серебра) до X порядка 10 _6 (теплопроводность наименее проводящих газов).

Теплопроводность газов сильно увеличивается с ростом температуры. Для некоторых газов (GH 4: NH 3) относительная теплопроводность с ростом температуры резко возрастает, а для некоторых (Ne) она снижается. По кинетической теории теплопроводность газов не должна зависеть от давления. Однако различные причины приводят к тому, что при увеличении давления теплопроводность немного увеличивается. В диапазоне давлений от атмосферного до нескольких миллибар теплопроводность не зависит от давления, так как средняя величина свободного пробега молекул увеличивается с уменьшением числа молекул в единице объема. При давлении -20 мбар длина свободного пробега молекул соответствует размеру измерительной камеры.

Измерение теплопроводности является старейшим физическим методом газового анализа. Он был описан в 1840 г., в частности, в работах А. Шлейермахера (1888-1889) и с 1928 г. применяется в промышленности. В 1913 г. фирмой Сименс был разработан измеритель концентрации водорода для дирижаблей. После этого в течение многих десятилетий приборы, основанные на измерении теплопроводности, с большим успехом разрабатывались и широко применялись в быстро растущей химической промышленности. Естественно, что сначала анализировали лишь бинарные газовые смеси. Лучшие результаты получают при большой разности теплопроводности газов. Среди газов самую большую теплопроводность имеет водород. На практике оправдалось также измерение концентрации CO s в дымовых газах, так как теплопроводности кислорода, азота и оксида углерода очень близки между собой, что позволяет смесь этих четырех компонентов рассматривать как квазибинарную .

Температурные коэффициенты теплопроводности разных газов неодинаковы, поэтому можно найти температуру, при которой теплопроводности разных газов совпадают (например, 490°С - для диоксида углерода и кислорода, 70°С - для аммиака и воздуха, 75°С - для диоксида углерода и аргона). При решении определенной аналитической проблемы эти совпадения можно использовать, приняв тройную газовую смесь за квазибинарную.

В газовом анализе можно считать, что теплопроводность является аддитивным свойством. Измерив теплопроводность смеси и зная теплопроводность чистых компонентов бинарной смеси, можно вычислить их концентрации. Однако эту простую зависимость нельзя применять к любой бинарной смеси. Так, например, смеси воздух - водяной пар, воздух - аммиак, оксид углерода - аммиак и воздух - ацетилен при определенном соотношении составляющих имеют максимальную теплопроводность. Поэтому применимость метода теплопроводности ограничена определенной областью концентраций. Для многих смесей имеется нелинейная зависимость теплопроводности и состава. Поэтому необходимо снимать градуировочную кривую, по которой должна быть изготовлена шкала регистрирующего прибора.

Датчики теплопроводности (термокондуктометрические датчики) состоят из четырех маленьких наполненных газом камер небольшого объема с помещенными в них изолированно от корпуса тонкими платиновыми проводниками одинаковых размеров и с одинаковым электрическим сопротивлением. Через проводники протекает одинаковый постоянный ток стабильной величины и нагревает их. Проводники - нагревательные элементы - окружены газом. Две камеры содержат измеряемый газ, другие две - сравнительный газ. Все нагревательные элементы включены в мостик Уитетона, при помощи которого измерение разности температур порядка 0,01°С не представляет трудностей. Такая высокая чувствительность требует точного равенства температур измерительных камер, поэтому всю измерительную систему помещают в термостат или в измерительную диагональ моста, включают сопротивление для температурной компенсации. До тех пор пока отвод тепла от нагревательных элементов в измерительных и сравнительных камерах одинаков, мост находится в равновесии. При подаче в измерительные камеры газа с другой теплопроводностью это равновесие нарушается, изменяется температура чувствительных элементов и вместе с этим их сопротивление. Результирующий ток в измерительной диагонали пропорционален концентрации измеряемого газа. Для повышения чувствительности рабочую температуру чувствительных элементов следует повышать, однако нужно следить, чтобы сохранилась достаточно большая разность теплопроводностей газа. Так, для различных газовых смесей имеется оптимальная по теплопроводности и чувствительности температура. Часто перепад между температурой чувствительных элементов и температурой стенок камер выбирается от 100 до 150°С.

Измерительные ячейки промышленных термокондуктометрических анализаторов состоят, как правило, из массивного металлического корпуса, в котором высверлены измерительные камеры. Этим обеспечиваются равномерное распределение температур и хорошая стабильность градуировки. Так как на показания измерителя теплопроводности влияет скорость газового потока, ввод газа в измерительные камеры осуществляют через байпасный канал. Решения различных конструкторов для обеспечения требуемого обмена газами приведены ниже. В принципе, исходят из того, что основной газовый поток связан соединительными каналами с измерительными камерами, через которые газ протекает под небольшим перепадом. При этом диффузия и тепловая конвекция оказывают решающее влияние на обновление газа в измерительных камерах. Объем измерительных камер может быть очень малым (несколько кубических миллиметров), что обеспечивает небольшое влияние конвективной теплоотдачи на результат измерения. Для уменьшения каталитического эффекта платиновых проводников их различными способами заплавляют в тонкостенные стеклянные капилляры. Для обеспечения стойкости измерительной камеры к коррозии покрывают стеклом все газопроводные части. Это позволяет измерять теплопроводность смесей, содержащих хлор, хлористый водород и другие агрессивные газы. Термокондуктометрические анализаторы с замкнутыми сравнительными камерами распространены преимущественно в химической промышленности. Подбор соответствующего сравнительного газа упрощает калибровку прибора. Кроме того, можно получить шкалу с подавленным нулем. Для уменьшения дрейфа нулевой точки должна быть обеспечена хорошая герметичность сравнительных камер. В особых случаях, например при сильных колебаниях состава газовой смеси, можно работать с проточными сравнительными камерами. При этом с помощью специального реагента из измеряемой газовой смеси удаляют один из компонентов (например, СО а раствором едкого калия), а затем направляют газовую смесь в сравнительные камеры. Измерительная и сравнительная ветви различаются в этом случае только отсутствием одного из компонентов. Такой способ часто делает возможным анализ сложных газовых смесей.

В последнее время вместо металлических проводников в качестве чувствительных элементов иногда используют полупроводниковые терморезисторы. Преимуществом терморезисторов является в 10 раз более высокий по сравнению с металлическими термосопротивлениями температурный коэффициент сопротивления. Этим достигается резкое увеличение чувствительности. Однако одновременно предъявляются намного более высокие требования к стабилизации тока моста и температуры стенок камер.

Раньше других и наиболее широко термокондуктометрические приборы начали применять для анализа отходящих газов топочных печей. Благодаря высокой чувствительности, высокому быстродействию, простоте обслуживания и надежности конструкции, а также своей невысокой стоимости анализаторы этого типа в дальнейшем быстро внедрялись в промышленность.

Термокондуктометрические анализаторы приспособлены лучше всего для измерения концентрации водорода в смесях. При выборе сравнительных газов нужно рассматривать также смеси различных газов. В качестве примера минимальных диапазонов измерения для различных газов можно использовать приведенные ниже данные (табл. 6.1).

Таблица 6.1

Минимальные диапазоны измерения для различных газов,

% к объему

Максимальным диапазоном измерения чаще всего является диапазон 0-100%, при этом 90 или даже 99% могут быть подавлены. В особых случаях термокондуктометрический анализатор дает возможность иметь на одном приборе несколько различных диапазонов измерения. Это используется, например, при контроле процессов заполнения и опорожнения охлаждаемых водородом турбогенераторов на тепловых электростанциях. Из-за опасности взрывов заполнение корпуса генератора производят не воздухом, а сначала в качестве продувочного газа вводят диоксид углерода и затем уже водород. Аналогично производят выпуск газа из генератора. С достаточно высокой воспроизводимостью на одном анализаторе могут быть получены следующие диапазоны измерения: 0-100% (объемн.) СО (в воздухе для продувки углекислым газом), 100-0% Н 2 в СО (для заполнения водородом) и 100-80% Н 2 (в воздухе для контроля чистоты водорода во время работы генератора). Это дешевый способ измерения.

Для определения содержания водорода в выделяющемся при электролизе хлористого калия хлоре с помощью термокондуктометрического анализатора можно работать как с запаянным сравнительным газом (S0 2 , Аг), так и с проточным сравнительным газом. В последнем случае смесь водорода и хлора сначала направляют в измерительную камеру, а затем в печь дожигания с температурой > 200°С. Водород сгорает с избыточным хлором и образует хлористый водород. Образовавшаяся смесь НС и С1 2 подается в сравнительную камеру. При этом по разности теплопроводностей определяют концентрацию водорода. Данный метод заметно снижает влияние примеси небольших количеств воздуха.

Для уменьшения погрешности, возникающей при анализе влажного газа, газ необходимо осушать, что осуществляют либо с помощью поглотителя влаги, либо понижением температуры газа ниже точки росы. Имеется еще одна возможность компенсировать влияние влажности, которая применима лишь при проведении измерения по схеме с проточным сравнительным газом.

Для работы с взрывоопасными газами ряд фирм изготавливает приборы во взрывобезопасном исполнении. В этом случае камеры измерителей теплопроводности рассчитывают на высокое давление, на входе и на выходе из камер устанавливают огнепреградители, а выходной сигнал ограничивается искробезопасным уровнем. Однако и такие приборы нельзя использовать для анализа смесей взрывоопасных газов с кислородом или водорода с хлором.

  • Сантиметр - грамм - секунда - система единиц измерения, которая широко использовалась до принятия Международной системы единиц (СИ).

Для исследования теплопроводности вещества используют две группы методов: стационарные и нестационарные.

Теория стационарных методов более проста и разработана более полно. Но нестационарные методы в принципе помимо коэффициента тепло­проводности позволяют получить информации о коэффициенте температуропроводности и теплоёмкости. Поэтому в последнее время большое внимание уделяется разработке нестационарных методов определения теплофизических свойств веществ.

Здесь рассматриваются некоторые стационарные методы определения коэффициента теплопроводности веществ.

а) Метод плоского слоя. При одномерном тепловом потоке через плоский слой коэффициент теплопроводности определяется по формуле

где d - толщина, T 1 и T 2 - температуры "горячей" и "холодной" поверхно­сти образца.

Для исследования теплопроводности этим методом необходимо создать близкий к одномерному тепловой поток.

Обычно температуры измеряют не на поверхности образца, а на неко­тором расстоянии от них (см. рис. 2.), поэтому необходимо в измеренную разность температур ввести поправки на перепад температуры в слое нагревателя и холодильника, свести к минимуму термическое сопротивление контактов.

При исследовании жидкостей для устранения явления конвекции градиент температур должен быть направлен вдоль поля гравитации (вниз).

Рис. 2. Схема методов плоского слоя для измерения теплопроводности.

1 – исследуемый образец; 2 – нагреватель; 3 – холодильник; 4, 5 – изоляционные кольца; 6 – охранные нагреватели; 7 – термопары; 8, 9 – дифференциальные термопары.

б) Метод Егера. Метод основан на решении одномерного уравнения тепло­проводности, описывавшего распространение теплоты вдоль стержня, нагреваемого электрическим током. Трудность использования этого метода состоит в невозможности создания строгих адиабатных условий на внешней поверхности образца, что нарушает одномерность теплового потока.

Расчётная формула имеет вид:

(14)

где s - электропроводность исследуемого образца, U – падение напряжения между крайними точками на концах стержня, DT – разность температур между серединой стержня и точкой на конце стержня.

Рис. 3. Схема метода Егера.

1 – электропечь; 2 – образец; 3 – цапфы крепления образца; Т 1 ¸ Т 6 – места заделки термопар.

Этот метод используют при исследовании электропроводных материалов.

в) Метод цилиндрического слоя. Исследуемая жидкость (сыпучий материал заполняет цилиндрический слой, образованный двумя расположенными коаксиально цилиндрами. Один из цилиндров, чаще всего внутренний, является нагревателем (рис.4).

Рис.4.Схема метода цилиндрического слоя

1 - внутренний цилиндр; 2 - основной нагреватель; 3 - слой исследуемого вещества; 4 – наружный цилиндр; 5 - термопары; 6 – охранные цилиндры; 7 - дополнительные нагреватели; 8 - корпус.

Рассмотрим подробнее стационарный процесс теплопроводности в цилиндрической стенке, температура наружной и внутренней поверхностей которой поддерживается постоянными и равными Т 1 и Т 2 (в нашем случае это слой исследуемого вещества 5). Определим тепловой поток через стенку при условии, что внутренний диаметр цилиндрической стенки d 1 = 2r 1 , а наружный d 2 = 2r 2 , l = const и теплота распространяется только в радиальном направлении.

Для решения задачи воспользуемся уравнением (12). В цилиндрических координатах, когда ; уравнение (12), согласно (1О), принимает вит:

. (15)

Введём обозначение dT /dr = 0, получим

После интегрирования и потенцирования этого выражения, переходя к первоначальным переменным получим:

. (16)

Как видно изэтого уравнения, зависимость T=f(r) носит логарифмический характер.

Постоянные интегрирования C 1 и C 2 можно, определить, если в это уравнение подставить граничные условия:

при r=r 1 Т = Т 1 и T 1 =C 1 lnr 1 +C 2 ,

при r=r 2 T=T 2 и T 2 =C 1 lnr 2 +C 2 .

Решение этих уравнений относительно С 1 и С 2 даёт:

;

Подставив эти выражения вместо С 1 и С 2 в уравнение (1б) , получим

(17)

тепловой поток через площадь цилиндрической поверхности радиуса r и длиной определяется с помощью закона Фурье (5)

.

После подстановки получим

. (18)

Коэффициент теплопроводности l при известных величинах Q , Т 1 , T 2 , d 1 , d 2 , рассчитывают по формуле

. (19)

Для подавления конвекции (в случав жидкости) цилиндрический слой должен иметь малую толщину, обычно доли миллиметра.

Уменьшение торцевых потерь в методе цилиндрического слоя достигается за счёт увеличения отношения /d и охранными нагревателями.

г) Метод нагретой проволоки. В этом методе отношение /d увеличивается за счёт уменьшения d . Внутренний цилиндр заменяется тонкой проволокой, являвшейся одновременно нагревателем и термометром сопротивления (рис.5). В результате относительной простоты конструкции и детальной разработки теории, метод нагретой проволоки стал одним из наиболее совершенных и точных. В практике экспериментальных исследований теплопроводности жидкостей игазов он занимает ведущее место.

Рис. 5. Схема измерительной ячейки, выполненной по методу нагретой проволоки. 1 – измерительная проволока, 2 – трубка, 3 – исследуемое вещество, 4 – токоподводы, 5 – потенциальные отводы, 6 – наружный термометр.

При условия, что весь тепловой поток от участка AВ распространяет­ся радиально и разность температур T 1 – T 2 не велика, так что в этих пределах можно считать l = const, коэффициент теплопроводности вещества определяется по формуле

, (20)

где Q AB = T×U AB – мощность, выделяемая на проволоке.

д) Метод шара. Находит применение в практике исследований теплопроводности жидкостей и сыпучих материалов. Исследуемому веществу придают форму сферического слоя, что позволяет, в принципе, исключать неконтролируемые потери теплоты. В техническом отношении этот метод достаточно сложен.

УДК 536.2.083; 536.2.081.7; 536.212.2; 536.24.021 А. В. Лузина, А. В. Рудин

ИЗМЕРЕНИЕ ТЕПЛОПРОВОДНОСТИ МЕТАЛЛИЧЕСКИХ ОБРАЗЦОВ МЕТОДОМ СТАЦИОНАРНОГО ПОТОКА ТЕПЛА

Аннотация. Описывается методика и конструктивные особенности установки для измерения коэффициента теплопроводности металлических образцов, выполненных в форме однородного цилиндрического стержня или тонкой прямоугольной пластины методом стационарного потока тепла. Нагрев исследуемого образца осуществляется посредством прямого электрического нагрева коротким импульсом переменного тока, закрепленным в массивных медных токовых зажимах, которые одновременно выполняют функцию теплоотвода.

Ключевые слова: коэффициент теплопроводности, образец, закон Фурье, стационарный теплообмен, измерительная установка, трансформатор, мультимер, термопара.

Введение

Перенос тепловой энергии от более нагретых участков твердого тела к менее нагретым посредством хаотически движущихся частиц (электронов, молекул, атомов и т.п.) называется явлением теплопроводности. Исследование явления теплопроводности широко используется в различных отраслях промышленности, таких как: нефтяная, авиационно-космическая, автомобильная, металлургическая, горнорудная и т.д.

Различают три основных вида теплообмена: конвекция, тепловое излучение и теплопроводность. Теплопроводность зависит от природы вещества и его физического состояния. При этом в жидкостях и твердых телах (диэлектриках) перенос энергии осуществляется путем упругих волн, в газах - посредством соударения и диффузии атомов (молекул), а в металлах - путем диффузии свободных электронов и с помощью тепловых колебаний решетки. Передача тепла в теле зависит от того, в каком состоянии оно находится: газообразном, жидком или твердом .

Механизм теплопроводности в жидкостях отличен от механизма теплопроводности в газах и имеет много общего с теплопроводностью твердых тел. В областях с повышенной температурой имеются колебания молекул с большой амплитудой. Эти колебания передаются смежным молекулам, и таким образом энергия теплового движения передается постепенно от слоя к слою. Этот механизм обеспечивает сравнительно малую величину коэффициента теплопроводности. С повышением температуры для большинства жидкостей коэффициент теплопроводности уменьшается (исключение составляют вода и глицерин, для них коэффициент теплопроводности увеличивается с повышением температуры) .

Явление переноса кинетической энергии при помощи молекулярного движения в идеальных газах обусловлено передачей тепла посредством теплопроводности. За счет хаотичности молекулярного движения молекулы перемещаются во всех направлениях. Перемещаясь из мест с более высокой температурой к местам с более низкой температурой, молекулы благодаря парным соударениям передают кинетическую энергию движения. В результате молекулярного движения происходит постепенное выравнивание температуры; в неравномерно нагретом газе передача тепла есть перенос определенного количества кинетической энергии при беспорядочном (хаотическом) движении молекул. С уменьшением температуры коэффициент теплопроводности газов понижается.

В металлах основным передатчиком тепла являются свободные электроны, которые можно уподобить идеальному одноатомному газу. Поэтому с некоторым приближением

Коэффициент теплопроводности строительных и теплоизоляционных материалов с повышением температуры увеличивается, с увеличением объемного веса он возрастает. Коэффициент теплопроводности сильно зависит от пористости и влажности материала. Теплопроводность различных материалов изменяется в диапазоне: 2-450 Вт/(м К) .

1. Уравнение теплопроводности

Закон теплопроводности основан на гипотезе Фурье о пропорциональности теплового потока разности температур на единице длины пути переноса тепла в единицу времени . Численно коэффициент теплопроводности равен количеству тепла, протекающего в единицу времени через единицу поверхности, при перепаде температуры на единице длины нормали, равном одному градусу.

Согласно закону Фурье, поверхностная плотность теплового потока ч пропорцио-

нальна градиенту температуры -:

Здесь множитель X называется коэффициентом теплопроводности. Знак минус указывает на то, что теплота передается в направлении уменьшения температуры. Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется плотностью теплового потока:

Количество теплоты, проходящее в единицу времени через изотермическую поверхность Б, называется тепловым потоком:

О = | чйБ = -1 -кдП^Б. (1.3)

Полное количество теплоты, прошедшее через эту поверхность Б за время т, определится из уравнения

От=-ДЛ-^т. (1.4)

2. Граничные условия теплопроводности

Существуют различные условия однозначности: геометрические - характеризующие форму и размеры тела, в котором протекает процесс теплопроводности; физические - характеризующие физические свойства тела; временные - характеризующие распределение температуры тела в начальный момент времени; граничные - характеризующие взаимодействие тела с окружающей средой .

Граничные условия I рода. В этом случае задается распределение температуры на поверхности тела для каждого момента времени.

Граничные условия II рода. В этом случае заданной является величина плотности теплового потока для каждой точки поверхности тела в любой момент времени:

Яра = Я (Х, У, 2,1).

Граничные условия III рода. В этом случае задается температура среды T0 и условия теплообмена этой среды с поверхностью тела.

Граничные условия IV рода формируются на основании равенства тепловых потоков, проходящих через поверхность соприкосновения тел.

3. Экспериментальная установка для измерения коэффициента теплопроводности

Современные методы определения коэффициентов теплопроводности можно разделить на две группы: методы стационарного потока тепла и методы нестационарного потока тепла.

В первой группе методов тепловой поток, проходящий через тело или систему тел, остается постоянным по величине и направлению. Температурное поле является стационарным.

В методах нестационарного режима используется переменное во времени температурное поле.

В настоящей работе использован один из методов стационарного потока тепла -метод Кольрауша .

Блок-схема установки для измерения теплопроводности металлических образцов показана на рис. 1.

Рис. 1. Блок-схема измерительной установки

Основным элементом установки является силовой понижающий трансформатор 7, первичная обмотка которого подключена к автотрансформатору типа ЛАТР 10, а вторичная обмотка, изготовленная из медной шины прямоугольного сечения, имеющая шесть витков, непосредственно подключена к массивным медным токовым зажимам 2, которые одновременно выполняют функцию теплоотвода-холодильника. Исследуемый образец 1 закрепляется в массивных медных токовых зажимах 2 с помощью массивных медных болтов (на рисунке не показаны), которые одновременно выполняют функцию теплоотвода. Контроль температуры в различных точках исследуемого образца осуществляется с помощью хромель-копелевых термопар 3 и 5, рабочие концы которых непосредственно закрепляются на цилиндрической поверхности образца 1 - одна в центральной части образца, а другая на конце образца. Свободные концы термопар 3 и 5 подключаются к мультимерам типа ДТ-838 4 и 6, которые позволяют проводить измерения температуры с точностью до 0,5 °С. Нагрев образца осуществляется посредством прямого электрического нагрева коротким импульсом переменного тока с вторичной обмотки силового трансформатора 7. Измерение силы тока в исследуемом образце осуществляется косвенным способом - методом измерения напряжения на вторичной обмотке кольцевого трансформатора тока 8, первичной обмоткой которого является силовая шина вторичной обмотки силового трансформатора 7, пропущенная через свободный зазор кольцевого магнитного сердечника. Измерение напряжения вторичной обмотки трансформатора тока осуществляется мультимером 9.

Изменение величины импульсного тока в исследуемом образце осуществляется с помощью линейного автотрансформатора 10 (ЛАТР), первичная обмотка которого через последовательно включенные сетевой предохранитель 13 и кнопку 12 подключена к сети переменного тока напряжением 220 В. Падение напряжения на исследуемом образце в режиме прямого электрического нагрева осуществляется с помощью мультимера 14, параллельно подключенного непосредственно к токовым зажимам 2. Измерение длительности импульсов тока осуществляется с помощью электрического секундомера 11, подключенного к первичной обмотке линейного автотрансформатора 10. Включение и выключение режима нагрева исследуемого образца обеспечивается кнопкой 12.

При проведении измерений коэффициента теплопроводности на вышеописанной установке необходимо выполнение следующих условий:

Однородность сечения исследуемого образца по всей длине;

Диаметр исследуемого образца должен находиться в интервале от 0,5 мм до 3 мм (в противном случае основная тепловая мощность будет выделятся в силовом трансформаторе, а не в исследуемом образце).

Диаграмма зависимости температуры от длины образца приведена на рис. 2.

Рис. 2. Зависимость температуры от длины образца

Как видно на приведенной диаграмме, зависимость температуры от длины исследуемого образца носит линейный характер с явно выраженным максимумом в центральной части образца, а на концах остается минимальной (постоянной) и равной температуре окружающей среды в течение интервала времени установления равновесного режима теплопередачи, которое для данной экспериментальной установки не превышает 3 минут, т.е. 180 секунд.

4. Вывод рабочей формулы для коэффициента теплопроводности

Количество теплоты, выделяемое в проводнике при прохождении электрического тока, можно определить по закону Джоуля - Ленца:

Qэл = 12-Я^ = и I I, (4.1)

где и, I - напряжение и сила тока в исследуемом образце; Я - сопротивление образца.

Количество теплоты, переносимое через поперечное сечение исследуемого образца за интервал времени t, выполненного в виде однородного цилиндрического стержня длиной £ и сечением 5, можно рассчитать по закону Фурье (1.4):

Qs = Я-йТ- 5- t, (4.2)

где 5 = 2-5осн, 5осн =^4-, ат = 2-ДТ = 2-(Гтах -Гтк1); й£ = Д£ = 1-£.

Здесь коэффициенты 2 и 1/2 указывают на то, что тепловой поток направлен от

центра образца к его концам, т.е. раздваивается на два потока. Тогда

^^б = 8-Я-(Гтах -Тт|п) -Б^ . (4.3)

5. Учет тепловых потерь на боковую поверхность

§Ожр = 2- Ббок -ДТха, (5.1)

где Ббок = п-й-1; а - коэффициент теплообмена поверхности исследуемого образца с окружающей средой, имеющий размерность

Разность температур

ДГх = Тх - Т0кр, (5.2)

где Тх - температура в данной точке поверхности образца; Гокр - температура окружающей среды, можно рассчитать из линейного уравнения зависимости температуры образца от его длины:

Тх = Т0 + к-х, (5.3)

где угловой коэффициент к можно определить через тангенс угла наклона линейной зависимости температуры образца от его длины:

ДТ Т - Т Т - Т

к = ф = МТ* = Ттах Ттт = 2 "тах Vр. (5.4)

Подставляя выражения (5.2), (5.3) и (5.4) в уравнение (5.1), получим:

SQaup = 2a-nd■ dx■(+ kx-Т0Кр) dt,

где Т0 Тсжр.

8Q0Kp = 2a.nd ■ kx ■ dx ■ dt. (5.5)

После интегрирования выражения (5.5) получим:

Q0Kp = 2nd■ dk j jdt■ x■ dx = 2nd-a-k■-I - | ■ t = -4a^nd■ k■ I2 ■ t. (5.6)

Подставляя полученные выражения (4.1), (4.3) и (5.6) в уравнение теплового баланса аолн = ожр + qs , где Qполн = QЭЛ, получим:

UIt = 8 ■Х ■ S^ ^^-o ■t + -a^n ■d ■ -(Tmax - To) ■t.

Решая полученное уравнение относительно коэффициента теплопроводности, получим:

и1 а £2 , л

Полученное выражение позволяет определять коэффициент теплопроводности тонких металлических стержней в соответствии с проведенными расчетами для типичных исследуемых образцов с относительной погрешностью

AU f (AI f (Л(ЛГ) ^ (At2

не превышающей 1,5 %.

Список литературы

1. Сивухин, Д. В. Общий курс физики / Д. В. Сивухин. - М. : Наука, 1974. - Т. 2. - 551 с.

2. Рудин, А. В. Исследование процессов структурной релаксации в стеклообразующих объектах при различных режимах охлаждения / А. В. Рудин // Известия высших учебных заведений. Поволжский регион. Естественные науки. - 2003. - № 6. - С. 123-137.

3. Павлов, П. В. Физика твердого тела: учеб. пособие для студентов, обучающихся по специальностям «Физика» / П. В. Павлов, А. Ф. Хохлов. - М. : Высш. шк., 1985. - 384 с.

4. Берман, Р. Теплопроводность твердых тел / Р. Берман. - М., 1979. - 287 с.

5. Лившиц, Б. Г. Физические свойства металлов и сплавов / Б. Г. Лившиц, В. С. Крапошин. - М. : Металлургия, 1980. - 320 с.

Лузина Анна Вячеславовна Luzina Anna Vyacheslavovna

магистрант, master degree student,

Пензенский государственный университет Penza State University E-mail: [email protected]

Рудин Александр Васильевич

кандидат физико-математических наук, доцент, заместитель заведующего кафедрой физики, Пензенский государственный университет E-mail: [email protected]

Rudin Aleksandr Vasil"evich

candidate of physical and mathematical sciences, associate professor,

deputy head of sub-department of physics, Penza State University

УДК 536.2.083; 536.2.081.7; 536.212.2; 536.24.021 Лузина, А. В.

Измерение теплопроводности металлических образцов методом стационарного потока тепла /

А. В. Лузина, А. В. Рудин // Вестник Пензенского государственного университета. - 2016. - № 3 (15). -С. 76-82.

Способность материалов и веществ проводить тепло называется теплопроводностью (X,) и выражается коли­чеством тепла, проходящим через стенку площадью 1 м2, Толщиной 1 м за 1 ч при разности температур на противо­положных поверхностях стенки в 1 град. Единица изме­рения теплопроводности - Вт/(м-К) или Вт/(м-°С).

Теплопроводность материалов определяют

Где Q - количество тепла (энергии), Вт; F - площадь сечения материала (образца), перпендикулярная направ­лению теплового потока, м2; At- разность температур на противоположных поверхностях образца, К или °С; б- толщина образца, м.

Теплопроводность - один из главных показателей свойств теплоизоляционных материалов. Этот показатель зависит от целого ряда факторов: общей пористости ма­териала, размера и формы пор, вида твердой фазы, вида газа, заполняющего поры, температуры и т. п.

Зависимость теплопроводности от этих факторов в наиболее универсальном виде выражают уравнением Лееба:

_______ Ђs ______ - і

Где Кр--теплопроводность материала; Xs - теплопровод­ность твердой фазы материала; Рс - количество пор, на­ходящихся в сечении, перпендикулярном потоку тепла; Pi -количество пор, находящихся в сечении, параллель­ном потоку тепла; б - радиальная постоянная; є - излу­чаемость; v - геометрический фактор, влияющий на. из­лучение внутри пор; Tt - средняя абсолютная температу­ра; d - средний диаметр пор.

Знание теплопроводности того или иного теплоизоля­ционного материала позволяет правильно оценить его теплоизоляционные качества и рассчитать толщину теп­лоизоляционной конструкции из этого материала по за­данным условиям.

В настоящее время существует ряд методов определе­ния теплопроводности материалов, основанных на изме­рении стационарного и нестационарного потоков тепла.

Первая группа методов позволяет проводить измере­ния в широком диапазоне температур (от 20 до 700° С) и получать более точные результаты. Недостатком мето­дов измерения стационарного потока тепла является большая продолжительность опыта, измеряемая часами.

Вторая группа методов позволяет проводить экспери­мент в течение нескольких минут (до 1 ч), но зато при­годна для определения теплопроводности материалов лишь при сравнительно низких температурах.

Измерение теплопроводности строительных материа­лов этим методом производят, пользуясь прибором, изо­браженным на рис. 22. При этом с помощью малоинер­ционного тепломера производят измерение стационарного теплового потока, проходящего через испытуемый обра­зец материала.

Прибор состоит из плоского электронагревателя 7 и малоинерционного тепломера 9, установленного на рас­стоянии 2 мм от поверхности холодильника 10, через ко­торый непрерывно протекает вода с постоянной темпера­турой. На поверхностях нагревателя и тепломера зало­жены термопары 1,2,4 и 5. Прибор помещен в металли­ческий кожух 6, заполненный теплоизоляционным мате­риалом. Плотное прилегание образца 8 к тепломеру и на­гревателю обеспечивается прижимным приспособлением 3. Нагреватель, тепломер и холодильник имеют форму диска диаметром 250 мм.

Тепловой поток от нагревателя через образец и мало­инерционный тепломер передается холодильнику. Вели­чина теплового потока, проходящего через центральную часть образца, измеряется тепломером, представляющим собой термобатарею на паранитовом диске, или тепло - мером с воспроизводящим элементом, в который вмонти­рован плоский электрический нагреватель.

Прибором можно измерять теплопроводность при тем­пературе на горячей поверхности образца от 25 до 700° С.

В комплект прибора входят: терморегулятор типа РО-1, потенциометр типа КП-59, лабораторный авто­трансформатор типа РНО-250-2, переключатель термо­пар МГП, термостат ТС-16, амперметр технический пе­ременного тока до 5 А и термос.

Образцы материала, подвергающиеся испытанию, должны иметь в плане форму круга диаметром 250 мм. Толщина образцов должна быть не более 50 и не менее 10 мм. Толщину образцов измеряют с точностью до 0,1 мм и определяют как среднее арифметическое из ре­зультатов четырех измерений. Поверхности образцов должны быть плоскими и параллельными.

При испытании волокнистых, сыпучих, мягких и полу­жестких теплоизоляционных материалов отобранные об­разцы помещают в обоймы диаметром 250 мм и высотой 30-40 мм, изготовленные из асбестового картона толщи­ной 3-4 мм.

Плотность отобранной пробы, находящейся под удель­ной нагрузкой, должны быть равномерна по всему объему и соответствовать средней плотности испытуемого мате­риала.

Образцы перед испытанием должны быть высушены до постоянной массы при температуре 105-110° С.

Подготовленный к испытаниям образец укладывают на тепломер и прижимают нагревателем. Затем устанав­ливают терморегулятор нагревателя прибора на задан­ную температуру и включают нагреватель в сеть. После установления стационарного режима, при котором в тече­ние 30 мин показания тепломера будут постоянными, от­мечают показания термопар по шкале потенциометра.

При применении малоинерционного тепломера с вос­производящим элементом переводят показания тепломе­ра на нуль-гальванометр и включают ток через реостат, и миллиамперметр на компенсацию, добиваясь при этом положения стрелки нуль-гальванометра на 0, после чего регистрируют показания по шкале прибора в мА.

При измерении количества тепла малоинерционным тепломером с воспроизводящим элементом расчет тепло­проводности материала производят по формуле

Где б - толщина образца, м; T - температура горячей поверхности образца, °С; - температура холодной по­верхности образца, °С; Q - количество тепла, проходя­щее через образец в направлении, перпендикулярном его поверхности, Вт/м2.

Где R - постоянное сопротивление нагревателя тепломе­ра, Ом; / - сила тока, A; F - площадь тепломера, м2.

При измерении количества тепла (Q) градуированным малоинерционным тепломером расчет производят по фор­муле Q = AE (Вт/м2), где Е - электродвижущая сила (ЭДС), мВ; А - постоянная прибора, указанная в гра- дуировочном свидетельстве на тепломер.

Температуру поверхностей образца измеряют с точ­ностью до 0,1 С (при условии стационарного состояния). Тепловой поток вычисляют с точностью до 1 Вт/м2, а теп­лопроводность- до 0,001 Вт/(м-°С).

При работе на данном приборе необходимо произво­дить его периодическую проверку путем испытания стан­дартных образцов, которые предоставляют научно-ис­следовательские институты метрологии и лаборатории Комитета стандартов, мер и измерительных приборов при Совете Министров СССР.

После проведения опыта и получения данных состав­ляют свидетельство об испытании материала, в котором должны содержаться следующие данные: наименование и адрес лаборатории, проводившей испытания; дата про­ведения испытания; наименование и характеристика ма­териала; средняя плотность материала в сухом состоя­нии; средняя температура образца во время испытания; теплопроводность материала при этой температуре.

Метод двух пластин позволяет получать более достоверные результаты, чем рассмотренные выше, так как испытанию подвергают сразу два образца-близнеца и, кроме того, тепловой поток, проходящий через образ­цы, имеет два направления: через один образец он идет снизу вверх, а через другой - сверху вниз. Это обстоя­тельство в значительной степени способствует усредне­нию результатов испытания и приближает условия опы­та к реальным условиям службы материала.

Принципиальная схема двухпластинчатого прибора для определения теплопроводности материалов методом стационарного режима показана на рис. 23.

Прибор состоит из центрального нагревателя 1, охран­ного нагревателя 2, охладительных дисков 6, которые од-

Новременно прижимают образцы материала 4 к нагре­вателям, изоляционной засыпки 3, термопар 5 и кожуха 7.

В комплект прибора входит следующая регулиру­ющая и измерительная аппаратура. Стабилизатор на­пряжения (СН), автотрансформаторы (Т), ваттметр (W ), Амперметры (А), регулятор температуры охранного на­гревателя (Р), переключатель термопар (Я), гальвано­метр или потенциометр для измерения температуры (Г) И сосуд со льдом (С).

Для обеспечения одинаковых граничных условий у пе­риметра испытуемых образцов форма нагревателя при­нята дисковой. Диаметр основного (рабочего) нагревате­ля для удобства расчета принят равным 112,5 мм, что соответствует площади в 0,01 м2.

Испытание материала на теплопроводность произво­дят следующим образом.

Из отобранного для испытания материала изготовля­ют два образца-близнеца в виде дисков диаметром, рав­ным диаметру охранного кольца (250 мм). Толщина об­разцов должны быть одинаковой и находиться в пределах от 10 до 50 мм. Поверхности образцов должны быть плоскими и параллельными, без царапин и вмятин.

Испытание волокнистых и сыпучих материалов про­изводят в специальных обоймах из асбестового картона.

Перед испытанием образцы высушивают до постоян­ной массы и измеряют их толщину с точностью до 0,1 мм.

Образцы укладывают с двух сторон электронагрева­теля и прижимают их к нему охладительными дисками. Затем устанавливают регулятор напряжения (латр) в по­ложение, при котором обеспечивается заданная темпера­тура электронагревателя. Включают циркуляцию воды в охладительных дисках и после достижения установив­шегося режима, наблюдаемого по гальванометру, изме­ряют температуру у горячих и холодных поверхностей образцов, для чего пользуются соответствующими термо­парами и гальванометром или потенциометром. Одновре­менно измеряют расход электроэнергии. После этого вы­ключают электронагреватель, а через 2-3 ч прекращают подачу воды в охладительные диски.

Теплопроводность материала, Вт/(м-°С),

Где W - расход электроэнергии, Вт; б - толщина образ­ца, м; F - площадь одной поверхности электронагрева­теля, м2;. t - температура у горячей поверхности образ­ца, °С; І2 - температура у холодной поверхности образ­ца, °С.

Окончательные результаты по определению теплопро­водности относят к средней температуре образцов
где t - температура у горячей поверхности образца (средняя двух образцов), °С; t 2 - температура у холод­ной поверхности образцов (средняя двух образцов), °С.

Метод трубы. Для определения теплопроводности теплоизоляционных изделий с криволинейной поверх­ностью (скорлуп, цилиндров, сегментов) применяют ус­тановку, принципиальная схема которой показана на

Рис. 24. Эта установка представляет собой стальную тру­бу диаметром 100-150 мм и длиной не менее 2,5 м. Внут­ри трубы на огнеупорном материале смонтирован нагре­вательный элемент, который разделен на три самостоя­тельные секции по длине трубы: центральную (рабочую), занимающую примерно ]/з длины трубы, и боковые, слу­жащие для устранения утечки тепла через торцы прибора (трубы).

Трубу устанавливают на подвесках или на подставках на расстоянии 1,5-2 м от пола, стен и потолка помеще­ния.

Температуру трубы и поверхности испытуемого ма­териала измеряют термопарами. При проведении испыта­ния необходимо регулировать мощность электроэнергии, потребляемую охранными секциями, для исключения пе­репада температуры между рабочей и охранными секция­
ми. Испытания проводят при установившемся тепловом режиме, при котором температура на поверхностях тру­бы и изоляционного материала постоянна в течение 30 мин.

Расход электроэнергии рабочим нагревателем можно измерять как ваттметром, так и отдельно вольтметром и амперметром.

Теплопроводность материала, Вт/(м ■ °С),

X -_____ D

Где D - наружный диаметр испытуемого изделия, м; d - Внутренний диаметр испытуемого материала, м; - тем­пература на поверхности трубы, °С; t 2 - температура на внешней поверхности испытуемого изделия, °С; I - длина рабочей секции нагревателя, м.

Кроме теплопроводности на данном приборе можно замерять величину теплового потока в теплоизоляцион­ной конструкции, изготовленной из того или иного тепло­изоляционного материала. Тепловой поток (Вт/м2)

Определение теплопроводности, основанное на мето­дах нестационарного потока тепла (методы динамиче­ских измерений). Методы, основанные на измерении не­стационарных потоков тепла (методы динамических из­мерений), в последнее время все шире применяются ДЛЯ определения теплофизических величин. Преимуществом этих методов является не только сравнительная быстрота проведения опытов, но и больший объем информации, по­лучаемой за один опыт. Здесь к другим параметрам кон­тролируемого процесса добавляется еще один - время. Благодаря этому только динамические методы позволя­ют получать по результатам одного опыта теплофизиче - ские характеристики материалов такие, как теплопровод­ность, теплоемкость, температуропроводность, темп ох­лаждения (нагревания)

В настоящее время существует большое количество методов и приборов для измерения динамических темпе­ратур и тепловых потоков. Однако все они требуют зна­
Ния конкретных условий и введения поправок к получен­ным результатам, так как процессы измерения тепловых величин отличаются от измерения величин другой при­роды (механических, оптических, электрических, акусти­ческих и др.) своей значи­тельной инерционностью.

Поэтому методы, ос­нованные на измерении стационарных потоков тепла, отличаются от рас­сматриваемых методов значительно большей идентичностью между ре­зультатами измерений и истинными значениями измеряемых тепловых ве­личин.

Совершенств о в а н и е динамических методов измерений идет по трем направлениям. Во-пер­вых, это развитие мето­дов анализа погрешно­стей и введения поправок в результаты измерений. Во-вторых, разработка автоматических коррек­тирующих устройств для компенсации динамиче­ских погрешностей.

Рассмотрим два наи­более распространенных в СССР метода, основан­ных на измерении неста­ционарного потока тепла.

1. Метод регу­лярного теплового режима с бикало - риметром. При при­менении этого метода мо­гут быть использованы различные типы конструкции бикалориметров. рассмот­рим один из них - малогабаритный плоский бикалори - метр типа МПБ-64-1 (рис. 25), который предназначен
для определения теплопроводности полужестких, волок­нистых и сыпучих теплоизоляционных материалов при комнатной температуре.

Прибор МПБ-64-1 представляет собой цилиндрической формы разъемную оболочку (корпус) с внутренним диа­метром 105 мм, в центре которой встроен сердечник с вмонтированным в него нагревателем и батареей диффе­ренциальных термопар. Прибор изготовлен из дюралюми­ния марки Д16Т.

Термобатарея дифференциальных термопар бикало - риметра оснащена медно-копелевыми термопарами, диа­метр электродов которых равен 0,2 мм. Концы витков тер­мобатарей выведены на латунные лепестки кольца из стеклоткани, пропитанной клеем БФ-2, и далее через про­вода к вилке. Нагревательный элемент, выполненный из Нихромовой проволоки диаметром 0,1 мм, нашит на про­питанную клеем БФ-2 круглую пластинку из стекло ткани. Концы проволоки нагревательного элемента, так же как и концы проволоки термобатареи, выведены на латунные лепестки кольца и далее, через вилку, к источнику пита­ния. Нагревательный элемент может питаться от сети пе­ременного тока напряжением 127 В.

Прибор герметичен благодаря уплотнению из вакуум­ной резины, заложенной между корпусом и крышками, а также сальниковой набивке (пеньково-суриковой) между ручкой, бобышкой и корпусом.

Термопары, нагреватель и их выводы должны быть хорошо изолированы от корпуса.

Размеры испытуемых образцов не должны превышать в диаметре 104 мм и по толщине-16 мм. На приборе одновременно производят испытание двух образцов-близ­нецов.

Работа прибора основана на следующем принципе.

Процесс охлаждения твердого тела, нагретого до тем­пературы T ° и помещенного в среду с температурой ©<Ґ при весьма большой теплопередаче (а) от тела к Среде («->-00) и при постоянной температуре этой среды (0 = const), делится на три стадии.

1. Распределение температуры в теле носит сначала случайный характер, т. е. имеет место неупорядоченный тепловой режим.

2. С течением времени охлаждение становится упоря­доченным, т. е. наступает регулярный режим, при кото­
ром изменение температуры в каждой точке тела подчи­няется экспоненциальному закону:

Q - AUe.-"1

Где © - повышенная температура в какой-нибудь точке тела; U - некоторая функция координат точки; е-осно­вание натуральных логарифмов; т - время от начала охлаждения тела; т - темп охлаждения; А - постоянная прибора, зависящая от начальных условий.

3. После регулярного режима охлаждение характери­зуется наступлением теплового равновесия тела с окру­жающей средой.

Темп охлаждения т после дифференцирования выра­жения

По т в координатах In В -Т выражается следующим об­разом:

Где А и В - константы прибора; С - полная теплоем­кость испытуемого материала, равная произведению удельной теплоемкости материала на его массу, Дж/(кг-°С);т - темп охлаждения, 1/ч.

Испытание проводят следующим образом. После по­мещения образцов в прибор крышки прибора плотно при­жимают к корпусу с помощью гайки с накаткой. Прибор опускают в термостат с мешалкой, например в термо­стат ТС-16, заполненный водой комнатной температуры, затем подсоединяют термобатарею дифференциальных термопар к гальванометру. Прибор выдерживают в тер­мостате до выравнивания температур наружной и внут­ренней поверхностей образцов испытуемого материала, что фиксируется показанием гальванометра. После это­го включают нагреватель сердечника. Сердечник нагре­вают до температуры, превышающей на 30-40° темпера­туру воды в термостате, а затем выключают нагреватель. Когда стрелка гальванометра возвратится в пределы шкалы, производят запись убывающих во времени пока­заний гальванометра. Всего записывают 8-10 точек.

В системе координат 1п0-т строят график, который должен иметь вид прямой линии, пересекающей в некото­рых точках оси абсцисс и ординат. Затем рассчитывают тангенс угла наклона полученной прямой, который выра­жает величину темпа охлаждения материала:

__ In 6t - In O2 __ 6 02

ТІЬ - - j

T2 - Tj 12 - "El

Где Bi и 02 - соответствующие ординаты для времени Ті и Т2.

Опыт повторяют вновь и еще раз определяют темп охлаждения. Если расхождение в значениях темпа охлаж­дения, вычисленного при первом и втором опытах, менее 5%, то ограничиваются этими двумя опытами. Среднее значение темпа охлаждения определяют по результатам двух опытов и вычисляют величину теплопроводности ма­териала, Вт/(м*°С)

Х = (А + ЯСуР)/и.

Пример. Испытуемый материал - минераловатный мат на фенольном связующем со средней плотностью в сухом состоянии 80 кг/м3.

1. Вычисляем величину навески материала, помеща­емую в прибор,

Где Рп- навеска материала, помещаемая в одну цилин­дрическую емкость прибора, кг; Vn - объем одной ци­линдрической емкости прибора, равный 140 см3; рср - средняя плотность материала, г/см3.

2. Определяем произведение BCYP , где В - константа прибора, равная 0,324; С - удельная теплоемкость ма­териала, равная 0,8237 кДж/(кг-К). Тогда ВСУР= =0,324 0,8237 0,0224 = 0,00598.

3. Результаты наблюдений за охлаждением образцов в приборе во времени заносим в табл. 2.

Расхождения в значениях темпа охлаждения т и т2 менее 5%, поэтому повторные опыты можно не произво­дить.

4. Вычисляем средний темп охлаждения

Т=(2,41 + 2,104)/2=2,072.

Зная все необходимые величины, подсчитываем тепло­проводность

(0,0169+0,00598) 2,072=0,047 Вт/(м-К)

Или Вт/(м-°С).

При этом средняя температура образцов составляла 303 К или 30° С. В формуле 0,0169 -Л (константа при­бора) .

2. Зондовый метод. Существует несколько раз­новидностей зондового метода определения теплопровод­
ности теплоизоляционных материалов, отличающихся друг от друга применяющимися приборами и принципами нагрева зонда. Рассмотрим один из этих методов - метод цилиндрического зонда без электронагревателя.

Этот метод заключается в следующем. Металлический стержень диаметром 5-6 мм (рис. 26) и длиной около 100 мм вводят в толщу горячего теплоизоляционного ма­териала и с помощью вмонтированной внутри стержня

Термопары определяют температуру. Определение темпе­ратуры производят в два приема: в начале опыта (в мо­мент нагревания зонда) и в конце, когда наступает рав­новесное состояние и повышение температуры зонда пре­кращается. Время между этими двумя отсчетами заме­ряют с помощью секундомера. ч Теплопроводность материала, Вт/ (м °С), , R 2CV

Где R - радиус стержня, м; С - удельная теплоемкость материала, из которого изготовлен стержень, кДж/(кгХ ХК); V-объем стержня, м3; т - промежуток времени между отсчетами температуры, ч; tx и U - значения тем­ператур в момент первого и второго отсчетов, К или °С.

Этот способ очень прост и позволяет быстро опреде­лить теплопроводность материала как в лабораторных, так и в производственных условиях. Однако он пригоден лишь для грубой оценки этого показателя.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.