Конструкция и назначение шарико-винтовых передач для станков с чпу. Шарико-винтовые передачи для станков Преимущества винтовых героторных насосов

Героторные пары

В этой статье хочется рассказать о принципе работы винтовых (или героторных) насосов. Насосы этого типа широко распространены в промышленности, а описание их работы встречается далеко не везде.
При одинаковом внешнем виде, эти насосы могут иметь совершенно разные рабочие параметры.
Попробуем разобраться, в чем отличие.

На рисунке представлен типовой винтовой насос в разрезе:

Где: 1. Подшипниковый узел, 2. Уплотнение вала, 3. Шарниры, 4. Тягя, 5. Винт (ротор), 6. Обойма (статор).

Героторной парой (рабочим органом винтового насоса), называют пару ротор-статор (или винт-обойма). При вращении ротора в статоре жидкость движется по спиралеобразному каналу статора. Таким образом, происходит перекачка жидкости.

Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой).
Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.
Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Отличием насосов друг от друга как раз и является применение разных по геометрии героторных пар.
Существуют четыре основных типов героторных пар, которые принято обозначать буквами латинского алфаита: S, L, D, P.
В нашей стране и странах ближнего зарубежья, пока выпускают насосы только с парами S и L. Более сложные в изотовлении пары D и P делают только за границей, например в Германии.

Типы героторных пар:

1. Геометрия "S":
Витков: 1/2
Производительность:100%
Диффер. давление: 12 бар

Преимущества геометрии S:
очень плавная подача
компактные габариты несмотря на большое число ступеней
большая площадь сечения входа
низкая скорость потока/высокая всасывающая способность
возможна перекачка спрессованных частиц
перекачка больших частиц

Следует отметить, что обойма с геометрией "S" являтся "запирающей", т.е. через неё при остановленном насосе жидкость протекать не будет.


2. Геометрия "L":
Витков: 1/2
Производительность:200%
Диффер. давление: 6 бар

Преимущества геометрии L:
хорошие объёмные характеристики при длительном межремонтном периоде благодаря длинной линии контакта между ротором и статором
компактные габариты при высокой производительности
меньшая скорость трения

Обойма этого типа является "незапирающей". При остановленном насосе жидкость может протекать через героторную пару.

3. Геометрия "D":
Витков: 2/3
Производительность:150%
Диффер. давление: 12 бар

Преимущества геометрии D:
очень малые габариты при высоком давлении и производительности
почти безпульсационная перекачка
высокая точность дозации


4. Геометрия "P":
Витков: 2/3
Производительность:300%
Диффер. давление: 6 бар

Преимущества геометрии P:
компактные размеры при очень высокой производительности
почти отсутствует пульсация
высокая точность дозации
хорошие объёмные показатели, длительный межремонтный период благодаря длинной контактной линии между ротором и статором

Мы привели примеры геометрии героторных пар одинаковой длины. Из рисунков видно, что количество витков у пар "S" в два раза выше чем у пары "L" при одиноковой длине. Это сказывается на максимальном давлении героторной пары. Чем болье витков, тем выше максимальное давление.

Как можно заметить, каждая героторная пара выдает определенное максимальное давление (если рассматривать пары одной длины).
Возникает вопрос: что делать, если давление на выходе нужно большее (или меньшее), чем выдает та или иная пара.
В этом случае, увеличивают (уменьшают) длину героторной пары. Так, например, увеличение длины пары "S" в два раза, приводит к увеличению маквимального давления насоса в 2 раза, т.е. давление возрастет до 12 атмосфер.

Винтовые насосы также могут изготавливаться в различных исполнениях для работы в тех или иных условиях.

Варианты компоновки насосов:

1. Классическая горизонтальная компоновка с подшипниковой стойкой

2. Горизонтальная компоновка без подшипниковой стойки

3. Дополнительный подпорный шнек

4. Бункер и шнековый питатель

5. Дополнительный мецератор (измельчитель)

Видео работы бочкового винтового насоса

Шарико-винтовые пары

Шарико-винтовая передача (ШВП) – это линейный механический привод, преобразующий вращение в линейное перемещение и наоборот. Конструктивно она представляет собой длинный винт, по которому движется шариковая гайка. Внутри гайки между ее внутренней резьбой и резьбой винта по спиралевидной траектории катятся шарики, затем попадая в возвратные каналы – внутренние или внешние.

Концы винта обычно закрепляются на подшипниковых опорах, а гайка соединена с перемещаемым узлом. Когда винт вращается, гайка линейно перемещается по винту вместе с полезной нагрузкой. Но существуют и шарико-винтовые пары с вращающейся гайкой – в такой конструкции винт линейно перемещается относительно гайки.

Обыкновенная винтовая передача состоит из винта и гайки, которые имеют трапецеидальную резьбу. В такой передаче при движении возникает трение скольжения, и около 70% энергии рассеивается в виде тепла.

В отличие от передачи винт-гайка, шарико-винтовой привод содержит элементы качения (шарики), которые передают механическую энергию между гайкой и винтом. Это обеспечивает ШВП значительные преимущества:

  • КПД может превышать 80%

  • требуемые мощность и крутящий момент приводных двигателей намного меньше

  • интенсивность износа минимизирована

  • срок службы намного больше, чем у винтовых передач скольжения, и может быть определен вычислением усталости при качении

  • меньший нагрев способствует непрерывной работе
Однако из-за малого коэффициента трения ШВП подвержены скатыванию, особенно при большом шаге резьбы. Поэтому в некоторых случаях требуется использование тормозного устройства для предотвращения самопроизвольного движения механизма.

Диапазон основных характеристик шарико-винтовых передач:


  • Номинальный диаметр винта – от 6 до 150 мм

  • Динамическая грузоподъемность – от 1,9 до 375 кН

  • Статическая грузоподъемность – от 2, 2 до 1250 кН

  • Линейная скорость – до 110 м/мин.
Существуют два типа шарико-винтовых передач, различающихся технологией изготовления резьбового винта: катаные (накатка резьбы) и шлифованные (нарезка резьбы с последующей шлифовкой поверхности). Катаные винты проще в производстве, поэтому более доступны. Шлифованные дороже, но имеют значительно лучшую точность изготовления резьбы, а, следовательно, точность и повторяемость позиционирования.

Важным параметром также является шаг резьбы. Чем он больше, тем выше максимальная линейная скорость, но ниже точность позиционирования и осевое усилие.

Мы предлагаем обширный ассортимент прецизионных ШВП с катаными и шлифованными винтами. Доступны и соответствующие аксессуары – фланцевые гайки и подшипниковые опоры.

Катаные шарико-винтовые передачи

Шарико-винтовые передачи SKF – это высокопроизводительное решение для широкого круга областей применения, в которых особенно важны точность, надежность и соотношение цена/качество.

Использование высокотехнологичного оборудования при производстве катаных винтов позволило добиться почти таких же характеристик и точности, как и у шлифованных, но с меньшими затратами. Стандартным является класс точности G9, согласно ISO 286-2:1988. Начиная с номинального диаметра 20 мм, катаные винты производства SKF соответствуют точности G7. По запросу доступны винты с точностью G5 по ISO 3408-3:2006, соответствующей точности G5 шлифованных винтов, предназначенные для позиционирования.

Из широкого ассортимента прецизионных катаных шариковинтовых пар SKF вы сможете выбрать именно то, что нужно в конкретном случае:

  • Миниатюрные шарико-винтовые пары (с номинальным диаметром от 6 мм, внешней или внутренней рециркуляцией шариков) – компактная, эффективная система привода.

  • Большая часть миниатюрных ШВП доступна в исполнении из нержавеющей стали.

  • Катаные шарико-винтовые передачи большего номинального диаметра (от 16 до 63 мм) доступны с различными видами гаек, с осевым зазором или без, с преднатягом – как для обычного использования в приводе, так и в точном позиционировании.

  • Для этих винтов предлагается множество дополнительных аксессуаров, например, опциональные фланцы для гаек и подшипниковые опоры, обеспечивающие упрощение сборки готовой системы.

  • Катаные шарико-винтовые пары с большим шагом обеспечивают высочайшие линейные скорости для специфических областей применения.

  • SKF также предлагает ШВП с вращающимися гайками, обеспечивающими снижение инерции системы. Вы можете обратиться к нам для получения более подробной информации.
Прецизионные шлифованные шарико-винтовые пары

SKF предлагает обширный ассортимент шлифованных шарико-винтовых передач для случаев, когда требуются высокая точность и жесткость. Так как поверхности качения обрабатываются специальным высокоточным оборудованием, шлифованные ШВП легко приспособить практически под любые требования. Стандартная точность резьбы – G5, по заказу доступны G3 и G1.

Как сделать правильный выбор?

В широком ассортименте шлифованных шарико-винтовых передач SKF вы наверняка найдете именно то, что нужно в конкретном случае:

  • Метрические и дюймовые

  • Гайка DIN или цилиндрическая фланцевая

  • Внутренние или наружные возвратные каналы

  • Фланец посередине гайки или с одного из торцов

  • Гайка с осевым зазором, без зазора, с преднатягом

  • Одинарная или двойная гайка

  • Стандартная обработка концов винта или по требованиям заказчика

  • Возможно изготовление гайки под заказ

  • Опционально – вал с заплечиками, вырезанными из металлической пластины
Все аксессуары, в том числе, подшипниковые опоры, могут поставляться уже установленными на шариковинтовую пару в сборе.

Каталоги SKF по шарико-винтовым передачам

С появлением промышленного производства винтовые передачи стали широко применяться в технике, в частности для перемещения суппортов металлорежущих станков. Развитием винтовых механизмов стали шарико-винтовые передачи (ШВП). Их появление обусловлено созданием нового поколения металлорежущего оборудования - станков с числовым программным управлением (ЧПУ).

Функциональное предназначение и устройство

Вид профиля впадины винт-гайка: а) арочный контур б) радиусный контур

Цель рассматриваемого механизма состоит в том, чтобы преобразовать вращательное движение привода в прямолинейное перемещение рабочего объекта. Передача состоит из двух составных частей: ходового винта и гайки.

Винт изготавливается из высокопрочных сталей марок 8ХФ, 8ХФВД, ХВГ, подвергнутых индукционной закалке, или 20Х3МВФ с азотированием. Резьба выполнена в форме спиральной канавки полукруглого или треугольного сечения. В зависимости от условий работы винта профиль впадины может иметь несколько исполнений. Наиболее часто применяется арочный или радиусный контур.

Охватывающая деталь - гайка является составным узлом. Она имеет сложное устройство. Обычно представляет собой корпус, в котором расположены два вкладыша с такими же канавками, как и у ходового винта. Материал вкладных деталей: объемно закаливаемая сталь марки ХВГ, цементируемые стали 12ХН3А, 12Х2Н4А, 18ХГТ. Вставки устанавливают таким образом, чтобы после сборки обеспечить предварительный натяг в системе винт-гайка.

Внутри винтовых канавок размещаются закаленные стальные шарики, изготовленные из стали ШХ15, которые при работе передачи циркулируют по замкнутой траектории. Для этого внутри корпуса гайки имеются несколько обводных каналов, выполненных в виде трубок, соединяющих витки гайки. Длина их может быть различной, то есть шарики могут возвращаться через один, два витка, или в конце гайки. Наиболее распространенным является возврат на смежный виток (система DIN).

Принцип работы

Винт приводится во вращение от приводного электродвигателя, гайка закреплена неподвижно на рабочем органе станка (суппорт, каретка, шпиндельная бабка, люнет и так далее). При этом возникает осевая сила, действующая на шарики, размещенные внутри гайки, под действием которой они начинают катиться в замкнутых винтовых канавках. Сила реакции воздействует на гайку, а поскольку та жестко соединена с перемещаемой деталью, заставляет последнюю перемещаться по направляющим станка. В чем состоит отличие работы ШВП от обычной винтовой передачи с трапециевидной резьбой, которая ранее применялась на станках?

    1. При вращении ходового винта прежней конструкции в зоне контакта двух деталей возникало трение скольжения, характеризующееся коэффициентом трения (бронза по стали, со смазкой) f = 0,07–0,1. В механизме с шариковыми элементами действует трение качения с коэффициентом f = 0,0015–0,006. Как видно из приведенных значений, винтовые шариковые передачи требует значительно меньшей мощности приводного двигателя.
    2. Для точного позиционирования каретки или суппорта станка перед остановкой рабочего органа необходимо замедлять скорость его перемещения. По достижении определенного порога минимальной скорости возможны микроостановки - залипания - движущегося узла. В момент возобновления движения его характер определяется трением покоя, которое при скольжении значительно превышает трение движения. Из-за этого возникают рывки, ухудшающие точность позиционирования. При трении качения этот недостаток практически сводится к нулю.

Быстроходные или скоростные ШВП

Быстроходный ШВП

Увеличение скорости перемещения гайки относительно винта достигается за счет увеличения шага между канавками, по сравнению со стандартным винтом в 3-5 раз, у обычной ШВП передачи диаметра 16-32мм шаг составляет 5-10мм, у скоростной тех же диаметров — 16-32мм и кратна диаметру винта.

За счет увеличения скорости перемещения — потери в жесткости и максимальной нагрузки на передачу (большей степени) и точности (в меньшей степени).

Классификация

По технологии изготовления ходовые винты бывают:

  • Катаные - с винтовой канавкой, получаемой методом холодной прокатки. Эти винты производятся с меньшими затратами, поэтому обладают лучшим соотношением цена-качество при средней точности изготовления (C5, C7, C9).
  • Шлифованные - относятся к прецизионным изделиям. После нарезания резьбы и последующей термообработки подвергаются шлифованию. Имеют повышенную точность (C1, C3, C5) и более высокую цену.

По конструкции:

  • Шарико-винтовые - изготовленные согласно стандарту DIN. Шарики возвращаются в смежную канавку по желобу отражателя, встроенного в гайку.
  • Прецизионные - изготавливаются шлифованием. Могут состоять из одной или двух гаек, иметь предварительный натяг (преднатяг) - устранение осевого зазора с целью повышения точности при реверсах и увеличения жесткости привода.
  • Прецизионные с сепаратором - отличаются конструкцией возврата шариков (отсутствует соударение) и шлифованным профилем канавки.
  • Прецизионные с вращающейся гайкой имеют встроенный подшипник, благодаря чему имеют повышенную точность перемещения.
  • Шлицевый вал с шариковыми втулками фланцевого исполнения. При этом вал выполняет функцию внутреннего кольца подшипника. Эта конструкция отличается компактностью и простотой монтажа.
  • Консольное исполнение винта . Применяется для коротких ходовых винтов, не имеющих второй поддержки.

Технические характеристики ШВП

    Основные параметры:
  • Диаметр и шаг винта - от 16 × 2,5 до 125 × 20 мм.
  • Длина винтового стержня. Ходовые винты для станков с ЧПУ обычно выпускаются с максимальной длиной 2,0–2,5 м, хотя под заказ изготавливают и до 8 метров.
  • Линейная скорость перемещения - до 110 м/мин.
  • Точность передачи - C1…C10.

Силовые характеристики для некоторых типоразмеров приведены в таблице:

Силовые параметры шарико-винтовых передач
Диаметр × шаг, мм Грузоподъемность, Н Осевая жесткость, Н/мкм
Статическая Динамическая Корпусных ШВП Бескорпусных ШВП
16 × 2,5 9600 5000 230
32 × 5 37500 17710 700 760
50 × 10 112500 57750 1000 1100
80 × 10 197700 66880 1700 1900
125 × 20 729000 278000 2850
Примечание: осевая жесткость указана для класса точности C1.

Установка передачи

Выбор ШВП для конкретного оборудования производится в процессе конструкторской разработки, а именно на стадии эскизного проектирования - после того как будут определены величина хода стола и необходимое усилие на винте. Затем уточняют техническое решение:

  • В зависимости от необходимой степени точности привода выбирают между обычной и прецизионной передачей.
  • Определяют конструктивный вариант гайки: одинарная, двойная, способ возврата шариков, наличие подшипника и другое. Одинарная гайка дешевле, но в случае износа требует замены, сдвоенную можно регулировать путем подшлифовки компенсатора. Система рециркуляции шариков с помощью трубок несколько увеличивает стоимость гайки, однако допускает возможность ремонта изношенных каналов путем замены обводных трубок.
  • Решают - требуется или нет поддержка свободного конца винта.
  • Уточняют характер соединения корпуса гайки с перемещаемым узлом, а также ведущего конца ходового винта с электромеханическим приводом. Производят динамический расчет, в случае необходимости вносят изменения в конструкцию.
  • Закончив сборку станка, производят испытания всех узлов, в том числе и шарико-винтовой передачи, согласно методике испытаний.

Область применения

ШВП получили широкое распространение во многих отраслях промышленности: станкостроение, робототехника, сборочные линии и транспортные устройства, комплексные автоматизированные системы, деревообработка, автомобилестроение, медицинское оборудование, атомная энергетика, космическая и авиационная промышленность, военная техника, точные измерительные приборы и многое другое. Несколько примеров использования этих узлов:

  • Приводы подач станков с ЧПУ. Первый серийно выпускаемый в СССР обрабатывающий центр ИР-500 имел 3 координаты обработки. Современные системы содержат значительно большее количество линейных приводов. Например, многошпиндельные автоматы продольного точения Tornos серии MULTI SWISS имеют 14 управляемых осей.
  • Перемещение поршня-рейки рулевого механизма автомобилей (МАЗ, КАМАЗ, Газель).
  • Вертикальное перемещение каретки производственного 3D-принтера VECTORUS серий iPro и sPro.

Производители:

  • Steinmeyer (Германия);
  • SKF (Швеция);
  • MecVel (Италия);
  • THK (Япония);
  • SBC (Корея);
  • HIWIN (Тайвань).

1. Технические характеристики
Шариковые винты, например NBS, отличаются строгим контролем качества, осуществленным во время каждого производственного процесса.
Высокая производительность винтов позволяет снизить крутящий момент до 70 % по отношению к традиционным трапецеидальным винтам, как в применениях общего назначения (превращение вращательного движения в поступательное движение), так и в специальных применениях (превращение поступательного движения во вращательное движение).

1.1 Геометрия контакта
Готическая арка создает значительную прочность винту, одновременно обеспечивая точность и низкие значения крутящего момента.

2. Параметры выбора шариковых винтов (с циркуляцией шариков) NBS

    Выбор шарикового винта (с циркуляцией шариков) обусловлен следующими параметрами:
    -Класс точности
    -Шаг резьбы
    -Номинальный срок службы
    -Способ крепления
    -Критическая скорость вращения
    -Жесткость
    -Рабочая температура
    -Смазка

2.1 Класс точности
В наличии имеются шариковые винты (с циркуляцией шариков) NBS со следующими классами точности:

СО. С1 . С2 . С3 . С5 . С7 . С10

Каждый класс точности обусловлен следующими параметрами:

Е. е. езоо. е2∏

Приведенный ниже график предоставляет описание их значений.

Таблица - Терминология для обозначения класса точности
Термин Ссылка Определение
Компенсация длины хода Т Компенсация длины хода -разница между теоретической и номинальной длиной хода;
небольшое значение компенсации (если сопоставляется с номинальным ходом) часто
необходимо для компенсации удлинения вызванного увеличением температуры или внешними нагрузками.
Если в данной компенсации нет необходимости - теоретический ход равен номинальному.
Фактическая длина хода - Фактическая длина хода - это осевое смещение между винтом и гайкой.
Средняя длина хода - Средняя длина хода - это прямая линия, которая наибольше приближается к фактической длине хода;
средняя длина хода представляет собой наклон фактической длины хода.
Отклонение средней длины хода Е Отклонение средней длины хода - это разница между
средней и теоретической длиной хода.
Изменение хода
е
езоо
e2п
Изменениями хода называется полоса с двумя параллельными линиями средней длины хода.
Максимальный диапазон изменений на длине хода.
Диапазон изменений, замеренный на длине обычной части хода равной 300мм.
Ошибка биения, диапазон изменений при одном обороте (2 радиана).
Таблица - Значения ±Е и e [ед.изм. µм]
Класс точности С0 С1 С2 С3 С5 С7 С10
Длина
хода
[мм]
от: до: ±Е е ±Е е ±Е е ±Е е ±Е е е е
100 3 3 3.5 5 5 7 8 8 18 18 ±50/
300mm
±210/
300mm
100 200 3.5 3 4.5 5 7 7 10 8 20 18
200 315 4 3.5 6 5 8 7 12 8 23 18
315 400 5 3.5 7 5 9 7 13 10 25 20
400 500 6 4 8 5 10 7 15 10 27 20
500 630 6 4 9 6 11 8 16 12 30 23
630 800 7 5 10 7 13 9 18 13 35 25
800 1000 8 6 11 8 15 10 21 15 40 27
1000 1250 9 6 13 9 18 11 24 16 46 30
1250 1600 11 7 15 10 21 13 29 18 54 35
1600 2000 18 11 25 15 35 21 65 40
2000 2500 22 13 30 18 41 24 77 46
2500 3150 26 15 36 21 50 29 93 54
3150 4000 30 18 44 25 60 35 115 65
4000 5000 52 30 72 41 140 77
5000 6300 65 36 90 50 170 93
6300 8000 110 60 210 115
8000 10000 260 140
10000 12500 320 170
Таблица - Значения е зоо и e 2π [ед.изм. µм]
Класс точности С0 С1 С2 СЗ С5 С7 С10
е зоо 3.5 5 7 8 18 50 210
e 2π 2.5 4 5 6 8

2.2 Преднатяг и осевой зазор
Преднатяг и осевой зазор шариковых винтов NBS указаны в приведенной ниже таблице.

Таблица - Сочетание преднатяга и осевого зазора
Класс преднатяга Р0 Р1 Р2 РЗ РА
Осевой зазор Да Нет Нет Нет Нет
Преднатяг Нет Нет Легкий Средний Сильный

В приведенных ниже таблицах перечисляются основные указания при выборе класса точности, преднатяга и осевого зазора шариковых винтов (с циркуляцией шариков) NBS.

Таблица - Класс точности, преднатяг и осевой зазор
Класс точности Преднатяг и осевой зазор Тип гайки Тип ходового винта
С 10 РО (с осевым зазором) Одинарная Накатанный
С 7 Р1 или РО По требованию Накатанный или выпрямленный
С 5 По требованию;
стандартный 0TNBS-P2
По требованию
ошибки шага
С 3 По требованию;
стандартный 0TNBS-P2
По требованию Выпрямленный, с сертификатом контроля
ошибки шага
Таблица - Сила преднатяга для класса P2
Модель Одинарная гайка Двойная гайка
1605 1 ± 3 N 3 ± 6 N
2005 1 ± 3 N 3 ± 6N
2505 2 ± 5 N 3 ± 6N
3205 2 ± 5 N 5 ± 8N
4005 2 ± 5 N 5 ± 8N
2510 2 ± 5 N 5 ± 8N
3210 3 ± 6 N 5 ± 8N
4010 3 ± 6 N 5 ± 8N
5010 3 ± 6 N 8 ± 12 N
6310 6 ± 10 N 8 ± 12 N
8010 6 ± 10 N 8 ± 12 N

2.3 Шаг резьбы
Выбор шага винта зависит от следующей формулы:

где:
Ph = шаг винта [мм]
Vmax = максимальная скорость перемещения системы [м/мин]
n mах = максимальный режим вращения винта [мин 1]

В том случае, если результатом уравнения не является целый результат, следует выбрать округленную в большую сторону величину, выбирая между имеющимися в наличии шагами.

Учитывая возможную переменность осевых нагрузок, вызванную, например, наличием сил инерции, следует рассчитать значение нагрузки обозначенное, как “средняя динамическая нагрузка Pm”, определяющая одинаковые коэффициенты переменных нагрузок.

2.4.1 Средняя динамическая нагрузка
Для расчета шарикового винта подверженного переменным условиям работы, используются средние значения Рm и n m:

Р m = средняя динамическая осевая нагрузка[N]
n m = средняя скорость [мин -1 ]

При условиях непрерывной нагрузки и переменной скорости можно достигнуть следующих значений:

При условиях переменной нагрузки и непрерывной скорости можно достигнуть следующих значений:

При условиях переменной нагрузки и переменной скорости можно достигнуть следующих значений:

Выбор винта в зависимости от воздействующих и (или) востребованных сил тяги обусловлен следующими величинами:

  • Статическая нагрузочная способность Соа
  • Динамическая нагрузочная способность Са

Нагрузочная статическая способность Соа (или коэффициент нагрузочной способности) определяется в качестве нагрузки постоянной интенсивности, действующей на ось винта, который, в точке максимального воздействия между соприкасающимися частями, устанавливает остаточную деформацию, равную 1/10000 диаметра тела качения.

Значения Соа приведены в размерных таблицах.

2.5.1 Коэффициент статического запаса прочности a s Коэффициент статического запаса прочности a s (или фактор статического запаса прочности) определяется следующим уравнением:

2.5.2 Коэффициент твердости f H
Коэффициент твердости учитывает поверхностную твердость дорожек качения:

где:
твердость дорожек HsV10 = фактическая твердость дорожек качения, выраженная в единицах по Виккерсу с испытательной нагрузкой равной 98.07 N

700HV10 = твердость, равная 700 единицам по Виккерсу при испытательной нагрузке равной 98.07 (700HV10 ≈ 60 HRC)

2.5.3 Коэффициент точности f ac
Коэффициент точности учитывает допуски обработки винта, а значит и класс точности, соответствующий стандарту.
В таблице приведены некоторые примеры.

Необходимость в коэффициенте статического запаса прочности a s > 1 свызвана возможным наличием ударов и (или) вибраций, пусковых и остановочных моментов, случайных нагрузок, которые могут привести к неисправности системы.
В приведенной ниже таблице указаны значения коэффициента статического запаса прочности с учетом типа применения.


Нагрузочной динамической способностью Са (или коэффициентом динамической нагрузки) является постоянная интенсивная динамическая нагрузка, действующая на ось винта, определяющая срок службы 10 6 оборотов.

Значения С а приведены в размерных таблицах.

2.7 Номинальный ресурс L

Номинальный ресурс L (это теоретический пробег,выполненный, по крайней мере, 90% показательного количества одинаковых шариковых винтов (с циркуляцией шариков), подверженных одинаковым условиям нагрузкам, не проявляя признаков усталости материала) определяется следующими условиями:

  • Гайка без преднатяга
  • Гайка с преднатягом

2.7.1 Гайка без преднатяга
Для шариковых винтов (с циркуляцией шариков) с гайкой без преднатяга, расчет номинального ресурса, выраженный в числе оборотов, определяется следующей формулой:

где:


P m = средняя задействованная динамическая осевая нагрузка [N]

  • Класс точности винта от 1 до 5
  • Надежность до 90 %

где:
a 1 = коэффициент надежности

2.7.2 Коэффициент a 1
Коэффициент а 1 учитывает возможность непрогиба C%.

Таблица - Коэффициент возможности непрогиба а 1
C% 80 85 90 92 95 96 97 98 99
a 1 1.96 1.48 1.00 0.81 0.62 0.53 0.44 0.33 0.21

Следует заметить, что для С% = 90 a 1 = 1.00

2.7.3 Гайка с преднатягом
Действительность последующих формул обусловлена поддержанием постоянного преднатяга; в ином случае следует учитывать случай с гайкой без преднатяга.
Для шариковых винтов (с циркуляцией шариков) с гайкой с преднатягом, расчет номинального ресурса, выраженный в числе оборотов, определяется следующей формулой:

где:
L 10 = номинальный ресурс [обороты]
L 10 b - (С а /Pm 2) х 10 6

L 10a и L1 0b номинальные ресурсы для двух половинок гайки.

    Данное уравнение действительно в следующих случаях:
  • Твердость дорожек качения = 60HRC
  • Класс точности винта от 1 до 5;
  • Надежность до 90 %.

В том случае, если условия эксплуатации не соответствуют приведенным выше условиям, следует использовать следующую формулу:

где:
L 10 = номинальный ресурс [обороты]
L 10 a = (C a /P m1) 3 X 10 6
L 10 b - (С а /Pm 2) х 10 6

a 1 = коэффициент надежности;
f ho = коэффициент твердости (см. коэффициент статического запаса прочности a s)
f ac = коэффициент точности (см. коэффициент статического запаса прочности a s)

P m1 и P m2 - средние осевые динамические нагрузки для двух половинок гайки;

Р r = сила преднатяга [N]

2.7.4 Номинальный срок службы в часах Lh

Имея L 10 (номинальныйресурс, выраженный в числе оборотов) можно рассчитать номинальный ресурс в часах работы L h ;

где:
L m = продолжительность работы [часы]
n m = средняя скорость вращения [мин -1 ]

m i = скорость [МИН -1 ]
qi = процентное распределение [%]

2.7.5 Номинальный срок службы в км Lkm

Имея L 10 (номинальный ресурс, выраженный в числе оборотов) можно рассчитать номинальный ресурс пройденного расстояния в км L km .

где:
L km =номинальный ресурс [км]
P h = шаг винта [мм]

В нижеследующей таблице приведены указания типического рабочего ресурса шарикового винта для применений общего назначения.

2.8 Способ крепления
Как правило, существуют следующие типы крепления шарикового винта:

Применяемый способ крепления - это функция условий применения, обеспечивающая жесткость и требуемую точность.

2.9 Критическая скорость вращения

Максимальная скорость вращения шарикового винта не должна превышать 80% критической скорости.
Критическая скорость вращения представляет собой точку, в которой винт начинает вибрировать, вырабатывая резонансный эффект, вызванный совпадением частоты вибрации с естественной частотой винта.

Значение критической скорости зависит от внутреннего диаметра ходового винта, способа крепления краев и длины свободной величины прогиба.
Критическая скорость измеряется следующей формулой:

где:
n cr = критическая скорость [мин -1 ]
f kn = коэффициент способа крепления
d 2 = внутренний диаметр ходового винта [мм]
l n = длина свободной величины прогиба [мм]

В зависимости от типа крепления, поставляются значения f kn:

где:
do = номинальный диаметр [м м]
da = диаметр шариков [мм]
а = угол контакта (= 45)

Длина свободной величины прогиба l n определяется в зависимости от:

-Гайки без преднатяга

l n = расстояние между креплениями [мм] (в случае крепления “неразъемное - свободное", следует учитывать расстояние между свободным краем винта и гнездом)

-Гайка с преднатягома

l n = максимальное расстояние между половиной гайки и креплением [мм] (в случае крепления “неразъемное - свободное", следует учитывать максимальное расстояние между половиной гайки и свободным краем винта)

n mах = максимальная скорость вращения винта [обороты/мин]

Критическая нагрузка - это максимальная осевая нагрузка, которой может подвергаться винт, не нарушая стабильности системы; в том случае, если действующая на винт максимальная осевая нагрузка достигнет или превысит значение критической нагрузки, создается новая форма воздействия на винт, которое называется “пиковая нагрузка”, вызывающая дополнительный прогиб помимо простого сжатия.

Данное явление, связанное с эластичными свойствами компонента, становиться более чувствительным тогда, когда большая длина свободной величины прогиба винта будет иметь достойные внимание значения по отношению к ее разрезу. Значение критической нагрузки определяется следующей формулой:

где:
P cr = Критическая нагрузка [N]
f kp = коэффициент способа крепления
d 2 = внутренний диаметр ходового винта [мм] (см. критическую скорость)
l cr = длина свободной величины прогиба [мм]

В зависимости от типа крепления, поставляются значения fkp:

Неразъемный - Неразъемный f kр = 40.6
Неразъемный - Опорный f kp = 20.4
Опорный - Опорный f kp = 10.2
Неразъемный - Свободный f kp = 2.6

Для расчета критической нагрузки, значение la определяется максимальным расстоянием между половиной гайки и креплением.

Для большей безопасности, следует рассматривать максимально допустимую осевую нагрузку, как равную половине критической нагрузки:

P max = максимально допустимая осевая нагрузка [N]

2.11 Жесткость

Осевая жесткость системы перемещения оснащенной шариковым винтом определяется следующей формулой:

где:
К = осевая жесткость системы
Р = осевая нагрузка [N]
е = осевая деформация системы [µm]

Осевая жесткость системы К - это функция осевой жесткости отдельно взятых компонентов, которые ее составляют: ходовой винт, гайка, опоры, соединительные опорные элементы и гайка.

где:
K s = осевая жесткость ходового винта
K N = осевая жесткость гайки
К в = осевая жесткость опор
К н = осевая жесткость соединительный опорных элементов и гайки

2.11.1 Ks- Осевая жесткость ходового винта

Значение жесткости Ks - это функция системы крепления.

Способ крепления: Неразъемный - Неразъемный

где:
d 2 = внутренний диаметр (см. критическую скорость вращения)
l s = расстояние между средней осью двух креплений

Способ крепления: Неразъемный - Опорный

где:
d 2 = внутренний диаметр [мм] (см. критическую скорость)
l s = максимальное расстояние между средними осями крепления и гайкой [мм].

2.11.2 K N - Осевая жесткость гайки

Двойная гайка с преднатягом

где:
K = табличная жесткость
F pr = сила преднатяга [N]

Простая гайка без преднатяга

Значение K N определяется следующей формулой:

где:
P = осевая нагрузка [N]
C a = нагрузочная динамическая способность [N]

2.11.3 Кв - Осевая жесткость опор

Осевая жесткость опор винта обусловлена жесткостью подшипников.
В случае жестких радиальных шариковых подшипников с угловым контактом применяются следующие формулы:

где:
бв = осевая деформация подшипника
Q = нагрузка на каждый шарик [N]
β = угол контакта (45°)
d = диаметр шариков [мм]
N = число шариков

Жесткость соединительных опорных элементов и гаек является характеристикой станка, а значит, не зависит от системы винта, гайки, опор.

2.12 Рабочая температура

В случае крепления типа “неразъемный-неразъемный", следует учитывать возможное тепловое расширение, вызванное повышением температуры винта во время работы; такое расширение, если предусмотрено соответствующим образом, оказывает на систему действие дополнительной осевой нагрузки, которое может привести к неисправности работы системы. Для решения проблемы необходимо выполнить достаточный преднатяг винта.

где:
AL = изменения длины [мм] а = коэффициент теплового расширения
(11.7 х 10 -6 [°С -1 ])
L = длина винта [мм]
АТ = изменения температуры[°С]

2.13 Смазка

Для смазки шариковых винтов NBS нужно учитывать следующие указания.

2.13.1Смазывание жидким смазочным материалом

Следует предпочитать данный тип смазывания в случае эксплуатации на высоких скоростях вращений. Смазочные жидкие вещества, которые можно применить, наделены теми же характеристиками, как и вещества применяемые для смазки подшипников качения (от VG 68 до VG 460). Выбор вязкости - это функция рабочих характеристик и рабочей среды: температура, скорость вращения, действующие нагрузки; только для винтов с низким режимом вращения рекомендуется применять высокие классы вязкости (около VG 400).
В данном случае не нужно обращать особого внимания на техобслуживание за исключением постоянного обеспечения в системе смазочного масла (промежутки для осуществления повторной смазки являются более короткими, чем в установках, использующих консистентную смазку).
В любом случае следует соблюдать инструкции производителя жидкого масла.

2.13.2 Консистентная смазка

Смазывание консистентной смазкой предназначено для невысоких скоростей вращения.
При выборе консистентной смазки следует учитывать предписания, применяемые для смазывания подшипников качения; поэтому рекомендуется использование консистентной смазкой на основе литийного мыла, а не смазок с твердыми добавками (как, напр., MoS2 или графитные смазки), за исключением очень низких режимов вращения; однако рекомендуется придерживаться инструкций производителя консистентной смазки.

3. Момент и номинальная мощность

Для приблизительного расчета значений момента и мощности двигателя для преобразования вращательного движения в прямолинейное движение, нужно использовать данные формулы:

где:

Рmax = максимальная действующая нагрузка [Н]
Ph = шаг резьбы [мм]
ɳ v = механический кпд винта (ок. 0.9)
ɳ t = механический кпд трансмиссии двигателя - винта
(трансмиссия с зубчатыми колесами ɳ t = 0.95+0.98);
z = передаточное число двигатель - винт

В случае прямого соединения двигателя - винта, z=1 и ɳ 2 =1.

где:
Nm = номинальная мощность двигателя [кВт]
Mm = номинальный крутящий момент [Нм]
Пmах = максимальный режим вращения винта [мин]
z = передаточное число двигатель - винт(Птах X Z = П motor)

В случае преобразования прямолинейного движения во вращательное движение, имеется:

М r = момент нагрузки [Нм]
Р max = максимальная действующая нагрузка [Н]
P h = шаг резьбы [мм]
ɳ r = механический кпд (ок. 0.8

4. Примеры монтажа

Таблица - Обозначение для заказа
Код типа гайки Направление
винта
Номинальный
диаметр
винта [мм]
Шаг [мм] Тип фланца Код обработки Класс
точности
Общая
длина
винта [мм]
Код
преднатяга
Одинарная или
двойная
Фланцевая или
не фланцевая
Тип
V = одинарная
W =двойная
F = фланцевая

C = фланцевая

U
I
Е
К
М
R = правое
L = левое
_ - N =без среза
S = одинарный срез
D = двойной срез
С = Выпрямленный
F = Накатанный
С 0
С 1
С 2
С 3
С 5
С 7
С 10
- Р0
Р1
Р2
РЗ
Р4

6. Программа расчета NBS для шариковых винтов (с циркуляцией шариков)

В нашем интернет-магазине Вы можете приобрести самостоятельно

Или, обратившись к нашим специалистам по бесплатному номеру телефона 8 800 700 72 07

А также, отправив заявку на адрес электронной почты sale@сайт

Рассмотрим соотношения между силами, действующими в винтовой паре с прямоугольной резьбой. Развернем виток прямоугольной резьбы винта по среднему диаметру d 2 в наклонную плоскость, а гайку заменим ползуном (рис. 1). Подъему ползуна по наклонной плоскости соответствует навинчивание гайки на винт.

Рис. 1 - Гайку заменим ползуном

Как известно из теоретической механики, сила взаимодействия F между наклонной плоскостью и ползуном, возникающая при движении его по наклонной плоскости, представляет собой равнодействующую нормальной силы и силы трения между ними и наклонена к нормали n поверхности их соприкосновения под углом трения φ.

Разложим силу F на две составляющие: осевую силу F а , действующую на винтовую пару, и окружную силу F t вращающую гайку при ее навинчивании (в других случаях вращающую винт при его ввинчивании).

Из чертежа разложения сил (рис. 1) следует, что
где ψ - угол подъема резьбы.

Очевидно, что крутящий момент T в резьбе, создаваемый силой F t , при навинчивании гайки или ввинчивании винта,

или

Спуску ползуна по наклонной плоскости (рис. 2) соответствует отвинчивание гайки или винта. В этом случае при разложении силы взаимодействия F между наклонной плоскостью и ползуном на осевую силу F a и окружную силу F ′ t имеем


Рис. 2 - Отвинчивание гайки

Очевидно, что при F ′ t ≥0 [что соответствует условию tg(φ-ψ)≥0] резьба будет самотормозящей. Следовательно, условие самоторможения прямоугольной резьбы математически определяется условием ψ≤φ. При подъеме ползуна по наклонной плоскости движущей силой F t (рис. 1) на высоту, равную ходу резьбы P h , работа движущих сил

а работа сил полезных сопротивлений

Коэффициент полезного действия η винтовой пары с прямоугольной резьбой при навинчивании гайки или ввинчивании винта.


или

Из анализа формулы следует, что для самотормозящей винтовой пары, где ψРассмотрим силовые соотношения, условия самоторможения и к. п. д, винтовой пары с треугольной или трапецеидальной резьбой. Так как рассуждения и выводы для указанных резьб одинаковы, то рассмотрим их применительно к треугольной резьбе. Если в рассмотренной винтовой паре заменим прямоугольную резьбу треугольной, то сила трения в резьбе, а следовательно, и окружная сила винтовой пары будут иметь другие значения. Определим силы трения и установим соотношения между силами трения в прямоугольной и треугольной резьбах. Для упрощения выводов угол наклона резьбы примем равным нулю. Сила трения для прямоугольной резьбы (рис. 3)

где ƒ - коэффициент трения. Сила трения для треугольной (рис. 4) или трапецеидальной резьбы

где α - угол профиля резьбы,
ƒ′ - приведенный коэффициент трения:

Рис. 3 - Сила трения для прямоугольной резьбы

Из формулы следует, что по сравнению с прямоугольной резьбой в треугольной и трапецеидальной резьбах трение больше. Для нормальной метрической резьбы α=60° и ƒ′=1,15ƒ, для трапецеидальной резьбы α=30° и ƒ′=1,04ƒ, следовательно, в этой резьбе трение больше, чем в прямоугольной резьбе, но меньше, чем в треугольной.

Рис. 4 - Сила трения трапецеидальной резьбы

Очевидно, что соотношению коэффициентов трения ƒ и ƒ′ соответствует соотношение между углами трения φ и φ′ где φ′ - приведенный угол трения:

Соотношения между силами в прямоугольной и треугольной резьбах аналогичны. Поэтому по аналогии с формулами следует, что для треугольной или трапецеидальной резьбы окружная сила
крутящий момент в резьбе
условие самоторможения определяется выражением ψ≤φ′, коэффициент полезного действия
а для самотормозящей винтовой пары, где ψ Рис. 5 - Торцовая опорная поверхность гайки

Момент трения T f на торце гайки или головки винта при их завинчивании определяют следующим образом. Торцовая опорная поверхность гайки или головки винта (рис. 5) принимается кольцевой с наружным диаметром D , равным раствору ключа, и внутренним диаметром d 0 равным диаметру отверстия под болт, винт или шпильку . Принято считать, что давление на опорной поверхности распределяется равномерно, т. е.

Таким образом, момент трения на торце гайки или головки винта

или окончательно

Для упрощения расчетов часто принимают, что равнодействующая силы трения ƒF на опорной поверхности гайки или головки винта действует по касательной к окружности среднего диаметра d c , опорной поверхности и момент

где

Последняя формула при технических расчетах дает вполне достаточную точность.

Очевидно, что момент завинчивания гайки или ввинчивания установочного винта



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.