Методика проведения качественного анализа. Качественный химический анализ

Анализ вещества может проводиться с целью установления качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое-нибудь новое соединение» обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т. п. Химическое превращение, происходящее при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

Например, для открытия в растворе -ионов анализируемый раствор сначала подкисляют хлористоводородной кислотой, а затем прибавляют раствор гексацианоферрата (II) калия . В присутствии выпадает синий осадок гексацианоферрата (II) железа (берлинская лазурь):

Другим примером качественного химического анализа может служить обнаружение солей аммония путем нагревания анализируемого вещества с водным раствором едкого натра. Ионы аммония в присутствии -ионов образуют аммиак, который узнают по запаху или по посинению влажной красной лакмусовой бумаги:

В приведенных примерах растворы гексацианоферрата (II) калия и едкого натра являются соответственно реактивами на и -ионы.

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определять в анализируемом веществе содержание отдельных элементов, называют элементным анализом; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

Совокупность разнообразных химических, физических и физикохимических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных! систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ, получение информации о качественном составе вещества, о природе его компонентов; один из основных видов химического анализа. Цели качественного химического анализа - обнаружение и идентификация компонентов аналитической пробы и/или опознание её как целостного объекта. Исходя из природы компонентов, различают изотопный, элементный, молекулярный, фазовый, структурно-групповой (функциональный) и другие виды качественного химического анализа. Обычно качественный химический анализ предшествует количественному химическому анализу.

Качественный химический анализ выполняют химическими методами анализа, физическими методами анализа, физико-химическими методами анализа и биохимическими методами анализа; используют также биологический метод анализа. Свойства пробы сравнивают со свойствами эталона, состав которого известен. Обычно эталон - предполагаемый компонент в чистом виде или его раствор. Свойства эталона могут быть изучены заранее и представлены в таблицах, справочниках и других базах данных. Совпадение какого-либо свойства пробы и эталона - единичный признак присутствия компонента; при этом компонент считают идентифицированным, если при испытании пробы выявлен ряд его независимых характеристик. Чем этих характеристик больше и чем они более специфичны именно для данного компонента, тем выше достоверность идентификации. Неспецифичность характеристик может приводить к ложной идентификации. Вывод «компонент отсутствует» также может быть ошибочным, если в пробе есть вещества, маскирующие опознаваемый компонент (например, переводящие его в другую форму), либо концентрация компонента в пробе ниже некоторого значения (предела обнаружения), зависящего от природы данного компонента и методики качественного химического анализа. Предел обнаружения (C min) - минимальное содержание компонента, необходимое для его обнаружения по данной методике с заданной надёжностью. Отрицательный результат обычно означает, что содержание компонента в пробе ниже C min .

До середины 17 века качественный химический анализ сводился к распознаванию чистых веществ по их цвету, запаху, вкусу, плотности и т.п.; учитывалось также изменение свойств пробы при прокаливании, окрашивание пламени при внесении в него вещества и др. Начиная с работ Р. Бойля, получил распространение элементный качественный химический анализ. Основным методом анализа стало проведение качественных химических реакций: к раствору пробы добавляют химический реагент, взаимодействующий с искомым компонентом, и о наличии в пробе этого компонента судят по образованию или исчезновению осадка, изменению цвета раствора, выделению газа и др. При образовании кристаллического осадка о его составе судят в основном по цвету, растворимости и форме кристаллов (на исследовании кристаллических осадков основана микрокристаллоскопия). Специфические качественные реакции позволяют обнаружить компонент без его выделения из пробы - так называемый дробный анализ (например, при взаимодействии иода с крахмалом синее окрашивание раствора однозначно указывает на присутствие иода). Неспецифичность многих качественных реакций потребовала разработки сложных схем систематического качественного химического анализа, включающих последовательное выделение из пробы групп ионов с подобными свойствами с помощью различных осадителей - групповых реагентов. В 18 веке шведским химиком Т. Бергманом предложена и в 19 веке немецкими химиками Г. Розе и К. Фрезениусом усовершенствована сероводородная схема систематического разделения и обнаружения химических элементов, основанная на использовании в качестве группового реагента Н 2 S. В анализе минералов и сплавов эту схему успешно использовали до 1970-х годов.

В конце 19 века В. Оствальд предложил рассматривать реакции разделения и обнаружения элементов в растворах как ионные реакции. Были предложены селективные и высокочувствительные реагенты органические на различные катионы и анионы, например, диметилглиоксим - реактив Чугаева (Л. А. Чугаев, 1905) для специфического обнаружения ионов Ni 2+ . Использование органических реагентов и маскирующих веществ при проведении качественного химического анализа способствовало созданию надёжных методик капельного анализа неорганических веществ (российский химик Н. А. Тананаев, австрийский химик Ф. Файгль). Успешно развивался качественный химический анализ органических веществ. Элементы, входящие в их состав (С, Н, N, О, S, Р, галогены), распознавали с помощью качественных реакций после термического разложения пробы и превращения элементов в реакционноспособные формы. Для установления состава и структуры органических соединений использовали химические методы функционального анализа.

Во 2-й половине 20 века чаще стали использоваться физические и физико-химические методы качественного химического анализа, имеющие ряд преимуществ перед химическими. Как правило, физические методы отличаются большей селективностью, экспрессностью, легче автоматизируются и дают более надёжные результаты. Если для химических методов C min порядка 10ˉ 4 ―10ˉ 6 моль/дм 3 , то некоторые физические методы позволяют обнаруживать примеси на уровне 10ˉ 8 ―10ˉ 12 моль/дм 3 . Физические методы основаны на измерении тех свойств пробы и эталона, которые зависят от природы, но не от содержания компонента. Так, при проведении атомно-эмиссионного спектрального анализа регистрируют спектр пробы, измеряют длины волн спектральных линий и проверяют наличие линий, характерных для искомого элемента и не зависящих от присутствия других элементов. Совпадение множества линий с точностью до погрешности измерения длины волны надёжно доказывает присутствие искомого элемента в пробе. Другие важные физические методы качественного химического анализа - рентгеновский спектральный анализ, ИК-спектроскопия, масс-спектрометрия, хромато-масс-спектрометрия. Реже используют кинетические и электрохимические методы анализа (например, полярографию), люминесцентный анализ. Резонансные методы (ЯМР- и ЭПР-спектрометрия) применяют для идентификации и установления структуры чистых веществ, а также для анализа смесей. Качественный химический анализ смесей органических веществ (нефтепродукты, лекарственные препараты, белки и др.) обычно включает фракционирование или полное разделение пробы методами хроматографии, экстракции, электрофореза и др. Характеристики удерживания компонентов в хроматографической колонке используются и для их идентификации. Современные направление в развитии качественного химического анализа - создание систем компьютерной идентификации, использующих базы данных или алгоритмы распознавания образов.

Литературу смотри при статьях Аналитическая химия, Химический анализ.

. Цель, возможные методы. Качественный химический анализ неорганических и органических веществ

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества (гл. 2.1), в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I 2 и наоборот.

Качественный анализ всегда предшествует количественному.

В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO 4 . При этом растворы теряют окраску.

Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.

При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.

Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.

К химическим реакциям в качественном анализе предъявляют следующие требования.

1. Реакция должна протекать практически мгновенно.

2. Реакция должна быть необратимой.

3. Реакция должна сопровождаться внешним эффектом (АС):

а) изменением окраски раствора;

б) образованием или растворением осадка;

в) выделением газообразных веществ;

г) окрашиванием пламени и др.

4. Реакция должна быть чувствительной и по возможности специфичной.

Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими , а добавляемое для этого вещество - реагентом . Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем », а в растворах - «мокрым путем ».

К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.

Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см 3 . Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.

Для качественного химического анализа используют все известные типы реакций: кислотно-основные, окислительно-восстановительные, осаждения, комплексообразования и другие.

Качественный анализ растворов неорганических веществ сводится к обнаружению катионов и анионов. Для этого используют общие и частные реакции. Общие реакции дают сходный внешний эффект (АС) со многими ионами (например, образование катионами осадков сульфатов, карбонатов, фосфатов и т.д.), а частные - с 2-5 ионами. Чем меньше число ионов дают сходный АС, тем селективнее (избирательнее) считается реакция. Реакция называется специфической , когда позволяет обнаружить один ион в присутствии всех остальных. Специфической, например, на ион аммония является реакция:

NH 4 Cl + KOH  NH 3  + KCl + H 2 O

Аммиак обнаруживают по запаху или по посинению красной лакмусовой бумажки, смоченной в воде и помещенной над пробиркой.

Селективность реакций можно повысить, изменяя их условия (рН) или применяя маскирование. Маскирование заключается в уменьшении концентрации мешающих ионов в растворе меньше предела их обнаружения, например путем их связывания в бесцветные комплексы.

Если состав анализируемого раствора несложен, то его после маскировки анализируют дробным способом. Он заключается в обнаружении в любой последовательности одного иона в присутствии всех остальных с помощью специфических реакций, которые проводят в отдельных порциях анализируемого раствора. Поскольку специфических реакций немного, то при анализе сложной ионной смеси используют систематический способ. Этот способ основан на разделении смеси на группы ионов со сходными химическими свойствами путем перевода их в осадки с помощью групповых реактивов, причем групповыми реактивами воздействуют на одну и ту же порцию анализируемого раствора по определенной системе, в строго определенной последовательности. Осадки отделяют друг от друга (например, центрифугированием), затем растворяют определенным образом и получают серию растворов, позволяющих в каждом обнаружить отдельный ион специфической реакцией на него.

Существует несколько систематических способов анализа, называемых по применяемым групповым реактивам: сероводородный, кислотно-основный, аммиачно-фосфатный и другие. Классический сероводородный способ основан на разделении катионов на 5 групп путем получения их сульфидов или сернистых соединений при воздействии H 2 S, (NH 4) 2 S, NaS в различных условиях.

Более широко применяемым, доступным и безопасным является кислотно-основный метод, при котором катионы разделяют на 6 групп (табл. 1.3.1.). Номер группы указывает на последовательность воздействия реактивом.


Таблица 1.3.1

Классификация катионов по кислотно-основному способу

Номер группы Катионы Групповой реактив Растворимость соединений
I Ag + , Pb 2+ , Hg 2 2+ 2MHCl Хлориды нерастворимы в воде
II Ca 2+ , Sr 2+ , Ba 2+ 1MH 2 SO 4 Сульфаты нерастворимы в воде
III Zn 2+ , Al 3+ , Cr 3+ , Sn 2+ , Si 4+ , As 4MNaOH Гидроксиды амфотерны, растворимы в избытке щелочи
IV Mg 2+ , Mn 2+ , Fe 2+ , Fe 3+ , Bi 3+ , Sb 3+ , Sb 5+ 25 %-й NH 3 Гидроксиды нерастворимы в избытке NaOH или NH 3
Номер группы Катионы Групповой реактив Растворимость соединений
V Co 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Hg 2+ 25 %-й NH 3 Гидроксиды растворяются в избытке NH 3 с образованием комплексных соединений
VI Na + , K + , NH 4 + Нет Хлориды, сульфаты, гидроксиды растворимы в воде

Анионы при анализе в основном не мешают друг другу, поэтому групповые реактивы применяют не для разделения, а для проверки наличия или отсутствия той или иной группы анионов. Стройной классификации анионов на группы не существует.

Наиболее простым образом их можно разделить на две группы по отношению к иону Ba 2+ :

а) дающие хорошо растворимые соединения в воде: Cl - , Br - , I - , CN - , SCN - , S 2- , NO 2 2- , NO 3 3- , MnO 4- , CH 3 COO - , ClO 4 - , ClO 3 - , ClO - ;

б) дающие плохорастворимые соединения в воде: F - , CO 3 2- , CsO 4 2- , SO 3 2- , S 2 O 3 2- , SO 4 2- , S 2 O 8 2- , SiO 3 2- , CrO 4 2- , PO 4 3- , AsO 4 3- , AsO 3 3- .

Качественный химический анализ органических веществ подразделяют на элементный , функциональный , структурный и молекулярный .

Анализ начинают с предварительных испытаний органического вещества. Для твердых измеряют t плав. , для жидких - t кип или , показатель преломления. Молярную массу определяют по понижению t замерз или повышению t кип, то есть криоскопическим или эбулиоскопическим методами. Важной характеристикой является растворимость, на основе которой существуют классификационные схемы органических веществ. Например, если вещество не растворяется в Н 2 О, но растворяется в 5%-ном растворе NaOH или NaHCO 3 , то оно относится к группе веществ, в которую входят сильные органические кислоты, карбоновые кислоты с более чем шестью атомами углерода, фенолы с заместителями в орто- и параположениях, -дикетоны.

Таблица 1.3.2

Реакции для идентификации органических соединений

Тип соединения Функциональная груп-па, участвующая в реакции Реагент
Альдегид С = О а) 2,4 - динитрофенилгидрозид б) гидрохлорид гидроксиламина в) гидросульфат натрия
Амин - NH 2 а) азотистая кислота б) бензолесульфохлорид
Ароматический углеводород Азоксибензол и хлорид алюминия
Кетон С = О См. альдегид
Ненасыщенный углеводород - С = С - - С ≡ С - а) раствор KMnO 4 б) раствор Вr 2 в СCL 4
Нитросоединение - NO 2 а) Fe(OH) 2 (соль Мора + КОН) б) цинковая пыль + NH 4 Clв) 20% раствор NaOH
Спирт (R) - OH а) (NH 4) 2 б) раствор ZnCl 2 в HCl в) йодная кислота
Фенол (Ar) - OH a) FeCl 3 в пиридине б) бромная вода
Эфир простой (R΄)- OR а) йодоводородная кислота б) бромная вода
Эфир сложный (R΄) - COOR а) раствор NaOH (или КОН) б) гдрохлорид гидроксиламина

Элементным анализом обнаруживают элементы, входящие в молекулы органических веществ (C, H, O, N, S, P, Cl, и др.). В большинстве случаев органическое вещество разлагают, продукты разложения растворяют и в полученном растворе определяют элементы как в неорганических веществах. Например, при обнаружении азота пробу сплавляют с металлическим калием, получая KCN, который обрабатывают FeSO 4 , переводят в K 4 . Добавляя к последнему раствор ионов Fe 3+ , получают берлинскую лазурь Fe 4 3 - (AC на присутствие N).

Анализ вещества может проводиться с целью установление качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое - нибудь новое соединение, обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т.п. Химическое превращение, происходит при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения частей данного соединения или смеси веществ. В отличии от качественного анализа количественный анализ дает возможность определить содержание отдельный компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементами анализа; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

Совокупность разнообразных химических, физических и физико - химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

Методы качественного анализа

В качественном анализе для установления состава исследуемого вещества используют характерные химические или физические свойства этого вещества. Совершенно нет необходимости выделять открываемые элементы в чистом виде, что бы обнаружить их присутствие в анализируемом веществе. Однако выделение в чистом виде металлов, неметаллов и их соединений иногда используется в качественном анализе для их идентификации, хотя такой путь анализа весьма труден. Для обнаружения отдельных элементов пользуются более простыми и удобными методами анализа, основанными на химических реакциях, характерных для ионов данных элементов и протекающих при строго определенных условиях.

Аналитическим признаком присутствия в анализируемом соединении искомого элемента является выделение газа, отличающегося специфическим запахом; в другом - выпадении осадка, характеризующегося определенным цветом.

Реакции, протекающее между твердыми веществами и газами. Аналитические реакции могут протекать не только в растворах, но имежду твердыми, а также и газообразными веществами.

Примером реакции между твердыми веществами является реакция выделение металлической ртути при нагревании сухих солей ее с карбонатом натрия. Образование белого дыма при взаимодействии газообразного аммиака с хлористым водородом может служить примером аналитической реакции с участием газообразных веществ.

Реакции, применяемые в качественном анализе можно подразделить на следующие группы.

1. Реакции осаждения, сопровождающиеся образованием осадков различных цвета. Например:

CaC2O4 - белого цвета

Fe43 - синий,

CuS - коричнево - желтый

HgI2 - красный

MnS - телесно - розовый

PbI2 - золотистый

Образующиеся осадки могут отличаться определенной кристаллической структурой, растворимостью в кислотах, щелочах, аммиака и т.п.

2. Реакции, сопровождающиеся образованием газов, обладающих известным запахом, растворимостью и т.д.

3. Реакции, сопровождающиеся образованием слабых электролитов. К числу таких реакций, в результате который образуются:CH3COOH, H2F2, NH4OH, HgCl2, Hg(CN)2, Fe(SCN)3 и т.п. Реакциями этого же типа можно считать реакции кислотно - основного взаимодействия, сопровождающиеся образованием нейтральных молекул воды, реакции образования газов и малорастворимых в воде осадков и реакции комплексообразования.

4. Реакции кислотно- основного взаимодействия, сопровождающиеся переходом протонов.

5. Реакции комплексообразования, сопровождающиеся присоединения к атомам комплексообразователя различных легандов - ионов и молекул.

6. Реакции комплексообразования, связанные с кислотно - основным взаимодействием

7. Реакции окисления - восстановления, сопровождающиеся переходом электронов.

8. Реакции окисления - восстановления, связанные с кислотно - основным взаимодействием.

9. Реакции окисления - восстановления, вязанные с комплексообразованием.

10. Реакции окисления - восстановления, сопровождающиеся образованием осадков.

11. Реакции ионного обмена, протекающие на катионитах или анионитах.

12. Каталитические реакции, используемые в кинетических методах анализа

Анализ мокрым и сухим путем

Реакции, применяемые в качественном химическом анализе, чаще всего проводят в растворах. Анализируемое вещество сначала растворяют, а затем действуют на полученный раствор соответствующими реактивами.

Для растворения анализируемого вещества применяют дистиллированную воду, уксусную и минеральные кислоты, царскую водку, водный раствор аммиака, органические растворители и т.п. Чистота применимых растворителей является важным условием для получения правильных результатов.

Переведенное в раствор вещество подвергают систематическому химическому анализу. Систематический анализ состоит из ряд предварительных испытаний и последовательно выполняемых реакций.

Химический анализ исследуемых веществ в растворах называют анализо мокрым путем.

В некоторых случаях вещества анализируют сухим путем, без перевода их в раствор. Чаще всего такой анализ сводиться к испытанию способности вещества окрашивать бесцветное пламя горелки в характерный цвет или придавать определенную окраску плаву (так называемую перлу), полученному при нагревании вещества с тетраборатом натрия (бурой) или фосфатом натрия ("фосфорной солью") в ушке из платиновой проволоки.

Химический и физический метод качественного анализа.

Химические методы анализа. Методы определения состава веществ, основанные на использовании их химических свойств, называют химическими методами анализа.

Химические методы анализа широко применяют в практике. Однако они имеют ряд недостатков. Так, для определения состава данного вещества иногда необходимо предварительно отделить определяемую составную часть от посторонних примесей и выделить ее в чистом виде. Выделение веществ в чистом виде часто составляет очень трудную, а иногда и невыполнимую задачу. Кроме того, для определения малых количеств примесей (менее 10"4%), содержащихся в анализируемом веществе, приходится иногда брать большие пробы.

Физические методы анализа. Присутствие того или иного химического элемента в образце можно обнаружить и не прибегая к химическим реакциям, основываясь непосредственно на изучении физических свойств исследуемого вещества, например окрашивании бесцветного пламени горелки в характерные цвета летучими соединениями некоторых химических элементов.

Методы анализа, при помощи которых можно определить состав исследуемого вещества, не прибегая к использованию химических реакций, называют физическими методами анализа. К физическим методам анализа относятся методы, основанные на изучении оптических, электрических, магнитных, тепловых и других физических свойств анализируемых веществ.

К числу наиболее широко применяемых физических методов анализа относятся следующие.

Спектральный качественный анализ. Спектральный анализ основан на наблюдении эмиссионных спектров (спектров испускания, или излучения) элементов, входящих в состав анализируемого вещества.

Люминесцентный (флуоресцентный) качественный анализ. Люминесцентный анализ основан на наблюдении люминесценции (излучение света) анализируемых веществ, вызываемой действием ультрафиолетовых лучей. Метод применяется для анализа природных органических соединений, минералов, медицинских препаратов, ряда элементов и др.

Для возбуждения свечения исследуемое вещество или его раствор облучают ультрафиолетовыми лучами. При этом атомы вещества, поглотив определенное количество энергии, переходят в возбужденное состояние. Это состояние характеризуется большим запасом энергии, чем нормальное состояние вещества. При переходе вещества от возбужденного к нормальному состоянию возникает люминесценция за счет избыточной энергии.

Люминесценцию, очень быстро затухающую после прекращения облучения, называют флуоресценцией.

Наблюдая характер люминесцентного свечения и измеряя интенсивность, или яркость люминесценции соединения или его растворов, можно судить о составе исследуемого вещества.

В ряде случаев определения ведут на основании изучения флуоресценции, возникающей в результате взаимодействия определяемого вещества с некоторыми реактивами. Известны также люминесцентные индикаторы, применяемые для определения реакции среды по изменению флуоресценции раствора. Люминесцентные индикаторы применяют при исследовании окрашенных сред.

Рентгеноструктурный анализ. С помощью рентгеновских лучей можно установить размеры атомов (или ионов) и их взаимное расположение в молекулах исследуемого образца, т. е. оказывается возможным определить структуру кристаллической решетки, состав вещества и иногда наличие в нем примесей. Метод не требует химической обработки вещества и больших его количеств.

Масс-спектрометрический анализ. Метод основан на определении отдельных ионизированных частиц, отклоняемых электромагнитным полем в большей или меньшей степени в зависимости от отношения их массы к заряду (подробнее см. книга 2).

Физические методы анализа, имея ряд преимуществ перед химическими, в некоторых случаях дают возможность решать вопросы, которые не удается разрешить методами химического анализа; пользуясь физическими методами, можно разделить элементы, трудно разделяемые химическими методами, а также вести непрерывную и автоматическую регистрацию показаний. Очень часто физические методы анализа применяют наряду с химическими, что позволяет использовать преимущества тех и других методов. Сочетание методов имеет особенно важное значение при определении в анализируемых объектах ничтожных количеств (следов) примесей.

Макро-, полумикро- и микрометоды

Анализ больших и малых количеств исследуемого вещества. В прежнее время химики пользовались для анализа большими количествами исследуемого вещества. Для того чтобы определить состав какого-либо вещества, брали пробы в несколько десятков граммов и растворяли их в большом объеме жидкости. Для этого требовалась и химическая посуда соответстэующей емкости.

В настоящее время химики обходятся в аналитической практике малыми количествами веществ. В зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, и главным образом от применяемой техники выполнения эксперимента, методы анализа делят на макро-, полумикро- и микрометоды.

При выполнении анализа макрометодом для проведения реакции берут несколько миллилитров раствора, содержащего не менее 0,1 г вещества, и к испытуемому раствору добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирках. При осаждении получают объемистые осадки, которые отделяют фильтрованием через воронки с бумажными фильтрами.

Капельный анализ

Техника проведения реакций в капельном анализе. Большое значение в аналитической химии приобрел так называемый капельный анализ, введенный в аналитическую практику Н. А. Тананаевым.

При работе этим методом большое значение имеют явления капиллярности и адсорбции, при помощи которых можно открывать и разделять различные ионы при их совместном присутствии. При капельном анализе отдельныеи реакции проводят на фарфоровых или стеклянных пластинках или на фильтровальной бумаге. При этом на пластинку или бумагу наносят каплю испытуемого раствора и каплю реактива, вызывающего характерное окрашивание или образование кристаллов.

При выполнении реакции на фильтровальной бумаге используют капиллярно-адсорбционные свойства бумаги. Жидкость всасывается бумагой, а образующееся окрашенное соединение адсорбцируется на небольшом участке бумаги, вследствие чего повышается чувствительность реакции.

Микрокристаллоскопический анализ

Микрокристаллоскопический метод анализа основан на обнаружении катионов и анионов при помощи реакции, в результате которых образуется соединение, обладающие характерной формой кристаллов.

Раньше этот метод применялся в качественном микрохимическом анализе. В настоящее время он используется также и в капельном анализе.

Для рассмотрения образующихся кристаллов в микрокристаллоскопическом анализе пользуются микроскопом.

Кристаллы характерной формы пользуются при работе с чистыми веществами путем внесения капли раствора или кристаллика реактива в каплю исследуемого вещества, помещенную на предметном стекле. Через некоторое время появляются ясно различимые кристаллы определенной формы и цвета.

Метод растирания порошка

Для обнаружения некоторых элементов иногда применяют метод растирания в фарфоровой пластинке порошкообразного анализируемого вещества с твердым реагентом. Открываемый элемент обнаруживается по образованию характерных соединений, отличающихся по цвету или запаху.

Методы анализа, основанные на нагревании и сплавлении вещества

Пирохимический анализ. Для анализа веществ применяют также методы, основанные на нагревании испытуемого твердого вещества или его сплавлении с соответствующими реагентами. Одни вещества при нагревании плавятся при определенной температуре, другие возгоняются, причем на холодных стенках прибора появляются характерные для каждого вещества осадки; некоторые соединения при нагревании разлагаются с выделением газообразных продуктов и т. д.

При нагревании анализируемого вещества в смеси с соответствующими реагентами происходят реакции, сопровождающиеся изменением цвета, выделением газообразных продуктов, образованием металлов.

Спектральный качественный анализ

Помимо описанного выше способа наблюдения невооруженным глазом за окрашиванием бесцветного пламени при внесении в него платиновой проволоки с анализируемым веществом в настоящее время широко используются другие способы исследования света, излучаемого раскаленными парами или газами. Эти способы основаны на применении специальных оптических приборов, описание которых дается в курсе физики. В такого рода спектральных приборах происходит разложение в спектр света с различными длинами волн, испускаемого образцом накаленного в пламени вещества.

В зависимости от способа наблюдения спектра спектральные приборы называют спектроскопами, с помощью которых ведут визуальное наблюдение спектра, или спектрографами, в которых спектры фотографируются.

Хроматографический метод анализ

Метод основан на избирательном поглощении (адсорбции) отдельных компонентов анализируемой смеси различными адсорбентами. Адсорбентами называют твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества.

Сущность хроматографического метода анализа кратко заключается в следующем. Раствор смеси веществ, подлежащих разделению, пропускают через стеклянную трубку (адсорбционную колонку), заполненную адсорбентом.

Кинетические методы анализа

Методы анализа, основанные на измерении скорости реакции и использовании ее величины для определения концентрации, объединяются под общим названием кинетических методов анализа (К. Б. Яцимирский).

Качественное обнаружение катионов и анионов кинетическими методами выполняется довольно быстро и сравнительно просто, без применения сложных приборов.

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И

СОЦИАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

(ГБОУ ВПО НГМУ Минздравсоцразвития России)

Фармацевтический факультет

Кафедра фармацевтической химии

АНАЛИТИЧЕСКАЯ ХИМИЯ. КАЧЕСТВЕННЫЙ АНАЛИЗ.

Методическое пособие для студентов заочного отделения фармацевтического факультета.

ВВЕДЕНИЕ

РАЗДЕЛ 1 КАЧЕСТВЕННЫЙ АНАЛИЗ.

§ 1. Качественные реакции на катионы по кислотно-основной классификации.

1.1. Катионы I группы

1.2. Катионы II группы

1.3. Катионы III группы

1.4. Катионы IV группы

1.5. Катионы V группы

1.6. Катионы VI группы

§2. Систематический анализ катионов всех шести групп по кислотно-основной классификации.

§3. Качественные реакции на анионы.

3.1. Анионы первой группы

3.2. Анионы второй группы

3.3. Анионы третьей группы и некоторые органические анионы

ВВЕДЕНИЕ

Аналитическая химия – это наука о принципах, методах и средствах определения состава вещества и в известной мере - их химического структуры, включающая в себя качественный и количественный химический анализ.

Проведение различных видов анализа является обязательной составляющей современного аптечного дела и фармацевтической промышленности. Химические и инструментальные методы анализа широко используются в фармации при анализе лекарственного сырья, лекарственных препаратов и лекарств. Аналитическая химия является необходимым фундаментом для дальнейшего изучения специальных дисциплин: фармацевтической химии, токсикологической химии, фармакогнозии.

Качественный химический анализ - это определение химических элементов, ионов, атомов, атомных групп, молекул и функциональных групп (например: карбоквильной – СООН и т.д.) в анализируемом веществе.

Качественный анализ является базой для изучения фармакопейного анализа, проводимого в рамках фармацевтического анализа. Фармакопейный анализ позволяет установить подлинность лекарственных веществ, его доброкачественность, входящих в состав лекарственных средств; он представляет собой совокупность способов и требований к исследованию лекарственных веществ, изложенных в Государственной фармакопее или другой нормативной документации. При отклонении от этих требований лекарственные средства к применению не допускаются. В дальнейшем, аналитические методики тщательно отработанные, проверенные экспертами (в России – Фармакопейным государственным комитетом, в США - Фармакопейной Конвенцией) и включенные в Государственную Фармакопею будем называть в данном пособии фармакопейными *.


При проведении качественного и количественного анализа используют аналитические признаки и аналитические реакции.

Аналитические признаки – такие свойства анализируемого вещества или продуктов его превращения, которые позволяют судить о наличии или отсутствии тех или иных компонентов.

Характерные аналитические признаки – цвет, запах, осадок, угол вращения плоскости поляризации, спектр поглощения в инфракрасной или ультрафиолетовой области света и т.д.

Аналитическая реакция – такое химическое превращение анализируемого вещества при действии аналитического реагента с образованием продукта с характерными аналитическими признаками.

Качественный химический анализ включает в себя дробный и систематический анализ.

Дробный анализ – обнаружение иона в анализируемой пробе с помощью специфического реагента в присутствии всех компонентов пробы.

Систематический анализ предусматривает разделение смеси анализируемых ионов по аналитическим группам с последующим обнаружением каждого иона. Существуют различные аналитические классификации катионов и анионов по группам; в данном пособии приведены наиболее часто использемые при проведении фармацевтического анализа.

РАЗДЕЛ 1. КАЧЕСТВЕННЫЙ АНАЛИЗ.

Основной задачей качественного химического анализа катионов и анионов является идентификация того или иного иона, т.е. доказательство его присутствия или отсутствия в анализируемом объекте.

В связи с применением различных групповых реагентов сформировались и различные аналитические классификации катионов по группам или различные химические методы качественного анализа катионов: сероводородный, аммиачно-фосфатный, кислотно-основной, карбонатный, сульфидно-основной, тиоцетамидный.

Наиболее распространенными являются три аналитические классификации по группам: сероводородная, аммиачно-фосфатная и кислотно-основная.

В пособии приведена кислотно-основная классификация катионов. Данная классификация катионов по группам основана на использовании в качестве групповых реагентов водных растворов кислот и оснований - хлороводородной кислоты, серной кислоты, гидроксидов натрия или калия и аммиака. Катионы, открываемые в рамках кислотно-основной классификации, подразделяют на шесть аналитических групп, которые будут рассмотрены в ходе лабораторных работ.

Кислотно-основная классификация катионов по группам.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.