Анализ случаев аномального переохлаждения. Анализ VRF-систем. Система переохлаждения хладагента Что такое переохлаждение фреона

Carrier

Инструкция по монтажу, наладке и обслуживанию

РАСЧЕТ ПЕРЕОХЛАЖДЕНИЯ И ПЕРЕГРЕВА

Переохлаждение

1. Определение


конденсации насыщенного пара хладагента (Тк)
и температурой в жидкостной линии (Тж):

ПО = Тк Тж.

Коллектор

температуры)


3. Этапы измерения

электронного на жидкостную линию рядом с фильтром
осушителем. Убедитесь, что поверхность трубы чистая,
и термометр плотно касается ее. Покройте колбу или
датчик пеной, чтобы теплоизолировать термометр
от окружающего воздуха.


низкого давления).

давление в линии нагнетания.

Измерения должны производиться, когда агрегат
работает в оптимальных проектных условиях и развивает
максимальную производительность.

4. По таблице пересчета давления в температуру для R 22

найдите температуру конденсации насыщенного пара
хладагента (Тк).

5. Запишите температуру, измеренную термометром

на жидкостной линии (Тж) и вычтите ее из температуры
конденсации. Полученная разница и будет значением
переохлаждения.

6. При правильной заправке системы хладагентом

переохлаждение составляет от 8 до 11°С.
Если переохлаждение оказалось меньше 8°С, нужно
добавить хладагента, а если больше 11°С удалить
излишки фреона.

Давление в линии нагнетания (по датчику):

Температура конденсации (из таблицы):

Температура в жидкостной линии (по термометру): 45°С

Переохлаждение (по расчету)

Добавьте хладагент согласно результатам расчета.

Перегрев

1. Определение

Переохлаждение это разность между температурой
всасывания (Тв) и температурой насыщенного испарения
(Ти):

ПГ = Тв Ти.

2. Оборудование для измерения

Коллектор
Обычный или электронный термометр (с датчиком

температуры)

Фильтр или теплоизолирующая пена
Таблица пересчета давления в температуру для R 22.

3. Этапы измерения

1. Поместите колбу жидкостного термометра или датчик

электронного на линию всасывания рядом с
компрессором (10 20 см). Убедитесь, что поверхность
трубы чистая, и термометр плотно касается ее верхней
части, иначе показания термометра будут неверны.
Покройте колбу или датчик пеной, чтобы теплоизо
лировать термометр от окружающего воздуха.

2. Вставьте коллектор в линию нагнетания (датчик

высокого давления) и линию всасывания (датчик
низкого давления).

3. После того, как условия стабилизируются, запишите

давление в линии нагнетания. По таблице пересчета
давления в температуру для R 22 найдите температуру
насыщенного испарения хладагента (Ти).

4. Запишите температуру, измеренную термометром

на линии всасывания (Тв) в 10 20 см от компрессора.
Проведите несколько измерений и рассчитайте
среднюю температуру линии всасывания.

5. Вычтите температуру испарения из температуры

всасывания. Полученная разница и будет значением
перегрева хладагента.

6. При правильной настройке расширительного вентиля

перегрев составляет от 4 до 6°С. При меньшем
перегреве в испаритель попадает слишком много
хладагента, и нужно прикрыть вентиль (повернуть винт
по часовой стрелке). При большем перегреве в
испаритель попадает слишком мало хладагента, и
нужно приоткрыть вентиль (повернуть винт против
часовой стрелки).

4. Пример расчета переохлаждения

Давление в линии всасывания (по датчику):

Температура испарения (из таблицы):

Температура в линии всасывания (по термометру): 15°С

Перегрев (по расчету)

Приоткройте расширительный вентиль согласно

результатам расчета (слишком большой перегрев).

ВНИМАНИЕ

ЗАМЕЧАНИЕ

После регулировки расширительного вентиля не забудьте
вернуть на место его крышку. Изменяйте перегрев только
после регулировки переохлаждения.

Напомним, что VRF-системы (Variable Refrigerant Flow — системы с переменным расходом хладагента), являются сегодня самым динамично развивающимся классом систем кондиционирования воздуха. Мировой рост продаж систем класса VRF ежегодно увеличивается на 20-25 %, вытесняя с рынка конкурирующие варианты кондиционирования. Благодаря чему происходит этот рост?

Во-первых, благодаря широким возможностям систем Variable Refrigerant Flow: большой выбор наружных блоков — от мини-VRF до больших комбинаторных систем. Огромный выбор внутренних блоков. Длины трубопроводов — до 1000 м (рис. 1).

Во-вторых, благодаря высокой энергоэффективности систем. Инверторный привод компрессора, отсутствие промежуточных теплообменников (в отличие от водяных систем), индивидуальный расход хладагента — всё это обеспечивает минимальное энергопотребление.

В-третьих, положительную роль играет модульность конструкции. Нужная производительность системы набирается из отдельных модулей, что без сомнения очень удобно и повышает общую надёжность в целом.

Именно поэтому сегодня VRF-системы занимают как минимум 40 % мирового рынка систем центрального кондиционирования и эта доля с каждым годом растёт.

Система переохлаждения хладагента

Какая максимальная длина фреоновых трубопроводов может быть у сплит-системы кондиционирования? Для бытовых систем производительностью до 7 кВт холода она составляет 30 м. Для полупромышленного оборудования эта цифра может достигать 75 м (инверторный наружный блок). Для сплит-систем данное значение максимально, но для систем класса VRF максимальная длина трубопроводов (эквивалентная) может быть и значительно большей — до 190 м (суммарная — до 1000 м).

Очевидно, что VRF-системы принципиально отличаются от сплит-систем с точки зрения фреонового контура, и это позволяет им работать при больших длинах трубопроводов. Это отличие заключается в наличии специального устройства в наружном блоке, которое называется переохладитель хладагента или subcooler (рис. 2).

Прежде чем рассмотреть особенности работы систем VRF, давайте обратим внимание на схему фреонового контура сплит-систем и поймём, что происходит с хладагентом при больших длинах фреоновых трубопроводов.

Холодильный цикл сплит-систем

На рис. 3 изображён классический цикл фреона в контуре кондиционера в осях «давление-энтальпия». Причём это цикл для любых сплит-систем на фреоне R410a, то есть от производительности кондиционера или марки вид данной диаграммы не зависит.

Начнём с точки D, с начальными параметрами в которой (температура 75 °C, давление 27,2 бара) фреон попадает в конденсатор наружного блока. Фреон в данный момент — это перегретый газ, который сначала остывает до температуры насыщения (около 45 °C), затем начинает конденсироваться и в точке А полностью переходит из состояния газа в жидкость. Далее происходит переохлаждение жидкости до точки А (температура 40 °C). Считается, что оптимальная величина переохлаждения равна 5 °C.

После теплообменника наружного блока хладагент поступает на устройство дросселирования в наружном блоке — терморегулирующий вентиль либо капиллярную трубку, и его параметры меняются до точки B (температура 5 °C, давление 9,3 бара). Обратим внимание, что точка В находится в зоне смеси жидкости и газа (рис. 3). Следовательно, после дросселирования в жидкостный трубопровод поступает именно смесь жидкости и газа. Чем больше величина переохлаждения фреона в конденсаторе, тем больше доля жидкого фреона поступает во внутренний блок, тем выше КПД кондиционера.

На рис. 3 обозначены следующие процессы: В-С — процесс кипения фреона во внутреннем блоке с постоянной температурой около 5 °C; С-С — перегрев фреона до +10 °C; С -L — процесс всасывания хладагента в компрессор (происходят потери давления в газовом трубопроводе и элементах фреонового контура от теплообменника внутреннего блока до компрессора); L-M — процесс сжатия газообразного фреона в компрессоре с повышением давления и температуры; М-D — процесс нагнетания газообразного хладагента от компрессора до конденсатора.

Потери давления в системе зависят от скорости фреона V и гидравлической характеристики сети:

Что будет происходить с кондиционером при увеличении гидравлической характеристики сети (вследствие повышенной длины или большого количества местных сопротивлений)? Повышенные потери давления в газовом трубопроводе приведут к падению давления на входе в компрессор. Компрессор начнёт захватывать хладагент меньшего давления и, значит, меньшей плотности. Расход хладагента упадёт. На выходе компрессор будет выдавать меньшее давление и, соответственно, упадёт температура конденсации. Пониженная температура конденсации приведёт к пониженной температуре испарения и обмерзанию газового трубопровода.

Если повышенные потери давления будут происходить на жидкостном трубопроводе, то процесс даже более интересный: так как мы выяснили, что в жидкостном трубопроводе фреон находится в насыщенном состоянии, а точнее, в виде смеси жидкости и пузырьков газа, то любые потери давления будут приводить к небольшому вскипанию хладагента и увеличению доли газа.

Последнее повлечёт за собой резкое увеличение объёма парогазовой смеси и увеличению скорости движения по жидкостному трубопроводу. Повышенная скорость движения снова вызовет дополнительную потерю давления, процесс станет «лавинообразным».

На рис. 4 приведён условный график удельных потерь давления в зависимости от скорости движения хладагента в трубопроводе.

Если, например, потери давления при длине трубопроводов 15 м составляют 400 Па, то при увеличении длины трубопроводов в два раза (до 30 м) потери увеличиваются не в два раза (до 800 Па), а в семь раз — до 2800 Па.

Поэтому простое увеличение длины трубопроводов в два раза относительно стандартных длин для сплит-системы с On-Off-компрессором фатально. Расход хладагента упадёт в несколько раз, компрессор будет перегреваться и очень скоро выйдет из строя.

Холодильный цикл VRF-систем с переохладителем фреона

На рис. 5 схематично изображён принцип работы переохладителя хладагента. На рис. 6 изображён тот же холодильный цикл на диаграмме «давление-энтальпия». Рассмотрим подробно, что же у нас происходит с хладагентом при работе системы Variable Refrigerant Flow.

1-2: Жидкий хладагент после конденсатора в точке 1 делится на два потока. Бóльшая часть проходит через противоточный теплообменник. В нём происходит охлаждение основной части хладагента до +15…+25 °C (в зависимости от его эффективности), которая далее поступает в жидкостный трубопровод (точка 2).

1-5: Вторая часть потока жидкого хладагента из точки 1 проходит через ТРВ, его температура понижается до +5 °C (точка 5), поступает на тот же противоточный теплообменник. В последнем происходит его кипение и охлаждение основной части хладагента. После кипения газообразный фреон сразу поступает на всасывание компрессора (точка 7).

2-3: На выходе из наружного блока (точка 2) жидкий хладагент проходит через трубопроводы к внутренним блокам. При этом теплообмена с окружающей средой практически не происходит, а вот часть давления теряется (точка 3). У некоторых производителей дросселирование производится частично в наружном блоке системы VRF, поэтому давление в точке 2 меньше, чем на нашем графике.

3-4: Потери давления хладагента в электронном регулирующем вентиле (ЭРВ), который располагается перед каждым внутренним блоком.

4-6: Испарение хладагента во внутреннем блоке.

6-7: Потери давления хладагента при его возврате в наружный блок по газовому трубопроводу.

7-8: Сжатие газообразного хладагента в компрессоре.

8-1: Охлаждение хладагента в теплообменнике наружного блока и его конденсация.

Рассмотрим подробнее участок от точки 1 до точки 5. В системах VRF без переохладителя хладагента процесс из точки 1 сразу переходит в точку 5 (по синей линии рис. 6). Удельная величина производительности хладагента (поступающего к внутренним блокам) пропорциональна длине линии 5-6. В системах, где переохладитель присутствует, полезная производительность хладагента пропорциональна линии 4-6. Сравнивая длины линии 5-6 и 4-6, становится понятной работа переохладителя фреона. Повышение эффективности охлаждения циркулирующего хладагента происходит как минимум на 25 %. Но это не означает, что производительность всей системы стала больше на 25 %. Дело в том, что часть хладагента не поступила к внутренним блокам, а сразу ушла на всасывание компрессора (линия 1-5-6).

Именно в этом состоит баланс: на какую величину повысилась производительность фреона, поступающего к внутренним блокам, на столько же уменьшилась производительность системы в целом.

Так в чём тогда смысл применения переохладителя хладагента, если общую производительность системы VRF он не увеличивает? Чтобы ответить на этот вопрос, снова вернёмся к рис. 1. Смысл применения переохладителя — снижение потерь на длинных трассах систем Variable Refrigerant Flow.

Дело в том, что все характеристики VRFсистем приводятся при стандартной длине трубопроводов 7,5 м. То есть сравнивать VRF-системы разных производителей по данным каталога не совсем корректно, поскольку реальные длины трубопроводов будут гораздо больше — как правило, от 40 до 150 м. Чем больше отличается длина трубопровода от стандартной, тем больше потери давления в системе, тем больше происходит вскипание хладагента в жидкостных трубопроводах. Потери производительности наружного блока по длине приводятся на специальных графиках в сервис-мануалах (рис. 7). Именно по этим графикам необходимо сравнивать эффективность работы систем при наличии переохладителя хладагента и при его отсутствии. Потери производительности VRF-систем без переохладителя на длинных трассах составляют до 30 %.

Выводы

1. Переохладитель хладагента является важнейшим элементом для работы VRF систем. Его функциями являются, во-первых, увеличение энергетической ёмкости хладагента, поступающего к внутренним блокам, во-вторых, уменьшение потерь давления в системе на длинных трассах.

2. Не все производители систем VRF снабжают свои системы переохладителем хладагента. Особенно часто исключают переохладитель ОЕМ-бренды для удешевления конструкции.

Кондиционера

Заправка кондиционера фреоном может осуществляться несколькими способами, каждый из них имеет свои преимущества, недостатки и точность.

Выбор метода заправки кондиционеров зависит от уровня профессионализма мастера, необходимой точности и используемых инструментов.

Также необходимо помнить о том что не все хладагенты можно дозаправлять, а лишь однокомпонентные (R22) или условно изотропные (R410a).

Многокомпонентные фреоны состоят из смеси газов с различными физическими свойствами, которые при утечке улетучиваются неравномерно и даже при небольшой утечке их состав изменяется, поэтому системы на таких хладагентах необходимо полностью перезаправлять.

Заправка кондиционера фреоном по массе

Каждый кондиционер заправлен на заводе определённым количеством хладагента, масса которого указана в документации на кондиционер (также указана на шильдике), там же указана информация о количестве фреона которое надо добавить дополнительно на каждый метр фреоновой трассы (обычно 5-15 гр.)

При заправке этим методом необходимо полностью освободить холодильный контур от оставшегося фреона (в баллон или стравть в атмосферу,экологии это нисколько не вредит- об этом читайте в статье о влиянии фреона на климат)и отвакуумировать. После залить в систему указанное количество хладагента по весам или с помощью заправочного цилиндра.

Преимущества этого метода в высокой точности и достаточной простоте процесса заправки кондиционера. К недостаткам относятся необходимость эвакуации фреона и вакуумирования контура, а заправочный цилиндр, к тому же имеет ограниченный объём 2 или 4 килограмма и большие габариты, что позволяет использовать его в основном в стационарных условиях.

Заправка кондиционера фреоном по переохлаждению

Температура переохлаждения – это разница между температурой конденсации фреона определённой по таблице или шкале манометра (определяется по давлению считанному с манометра, подсоединённого к магистрали высокого давления непосредственно на шкале или по таблице) и температурой на выходе из конденсатора. Температура переохлаждения обычно должна находится в пределах 10-12 0 C (точное значение указывают производители)

Значение переохлаждения ниже данных значений указывает на недостаток фреона- он не успевает достаточно охладиться. В этом случае его надо дозаправить

Если переохлаждение выше указанного диапазона, значит в системе переизбыток фреона и его необходимо слить до достижения оптимальных значений переохлаждения.

Заправить данным способом можно с помощью специальных приборов, которые сразу определяют величину переохлаждения и давление конденсации, а можно и с помощью отдельных приборов- манометрического коллектора и термометра.

К достоинствам этого метода относится достаточная точность заправки. Но на точность данного метода влияет загрязнённость теплообменника, поэтому до заправки данным методом необходимо очистить (промыть) конденсатор наружного блока.

Заправка кондиционера хладагентом по перегреву

Перегрев- это разница между температурой испарения хладагента определённой по давлению насыщения в холодильном контуре и температурой после испарителя. Практически определяется путём измерения давления на всасывающем вентиле кондиционера и температуры всасывающей трубки на расстоянии 15-20 см от компрессора.

Перегрев обычно находится в пределе 5-7 0 C (точное значение указывает производитель)

Снижение перегрева говорит о переизбытке фреона - его необходимо слить.

Переохлаждение выше нормы говорит о недостатке хладагента- систему нужно заправлять до достижения требуемой величины перегрева.

Данный метод достаточно точен и его можно существенно упростить, если использовать специальные приборы.

Другие методы заправки холодильных систем

Если в системе есть смотровое окошко, то по наличию пузырьков можно судить о нехватке фреона. В этом случае заправляют холодильный контур до исчезновения потока пузырьков, делать это нужно порциями, после каждой ждать стабилизации давления и отсутствия пузырьков.

Также можно заправлять по давлению, добиваясь при этом температур конденсации и испарения указанных производителем. Точность этого метода зависит от чистоты конденсатора и испарителя.

Повышение эффективности работы холодильной

установки за счет переохлаждения хладагента

ФГОУ ВПО «Балтийская государственная академия рыбопромыслового флота»,

Россия, *****@***ru

Уменьшение потребления электрической энергии является очень важным аспектом жизни в связи со сложившейся энергетической ситуацией в стране и в мире. Снижения энергопотребления холодильными установками можно достичь повышением холодопроизводительности холодильных установок. Последнее может быть осуществлено с помощью различных видов переохладителей. Таким образом, рассмотрены различные виды переохладителей и разработан наиболее эффективный.

холодопроизводительность, переохлаждение, регенеративный теплообменник, переохладитель, межтрубное кипение, кипение внутри труб

За счет переохлаждения жидкого хладагента перед дросселированием может быть достигнуто значительное повышение эффективности работы холодильной установки. Переохлаждения хладагента можно добиться за счет установки переохладителя. Переохладитель жидкого холодильного агента, идущего из конденсатора при давлении конденсации к регулирующему вентилю, предназначен для его охлаждения ниже температуры конденсации. Существуют различные способы переохлаждения: за счет кипения жидкого холодильного агента при промежуточном давлении, за счет парообразного агента, выходящего из испарителя, и с помощью воды. Переохлаждение жидкого холодильного агента позволяет увеличить холодопроизводительность холодильной установки.

Одним из видов теплообменных аппаратов, предназначенных для переохлаждения жидкого хладагента, являются регенеративные теплообменники. В аппаратах данного вида переохлаждение холодильного агента достигается за счет парообразного агента, выходящего из испарителя.


В регенеративных теплообменниках происходит теплообмен между жидким холодильным агентом, идущим из ресивера к регу­лирующему вентилю, и парообразным агентом, выходящим из испарителя. Регенеративные теплообменники используются для выполнения одной или нескольких следующих функций:

1) повышения термодинамической эффективности холодиль­ного цикла;

2) переохлаждения жидкого холодильного агента для пред­отвращения парообразования перед регулирующим вентилем ;

3) испарения небольшого количества жидкости, уносимой из испарителя. Иногда при использовании испарителей затоплен­ного типа богатый маслом слой жидкости намеренно отводят во всасывающую линию для обеспечения возврата масла. В этих случаях регенеративные теплообменники служат для испарения жидкого холодильного агента из раствора.

На рис. 1 представлена схема установки РТ.

Рис.1. Схема установки регенеративного теплообменника

Fig. 1. The scheme of installation of the regenerative heat exchanger

Простейшая форма теплообменника получается при метал­лическом контакте (сварке, пайке) между жидкостным и паровым трубопроводами для обеспечения противотока. Оба трубопровода покрываются изоляцией как единое целое. Для обеспечения макси­мальной производительности жидкостная линия должна быть размещена ниже всасывающей, поскольку жидкость во всасыва­ющем трубопроводе может течь вдоль нижней образующей .

Наибольшее распространение в отечественной промышлен­ности и за рубежом получили кожухозмеевиковые и кожухотрубные регенеративные теплообменники. В малых холодильных машинах, выпускаемых зарубежными фирмами, иногда исполь­зуются змеевиковые теплообменники упрощенной конструкции, в которой жидкостная трубка навивается на всасывающую. Фирма «Данхэм-Баш» (Dunham-Busk, США) для улучшения теплопере­дачи навитый на всасывающую линию жидкостный змеевик за­ливает алюминиевым сплавом. Всасывающая линия снабжается внутренними гладкими продольными ребрами, обеспечивающими хорошую теплоотдачу к пару при минимальном гидравлическом сопротивлении. Эти теплообменники предназначены для устано­вок холодопроизводительностью менее 14 кВт.

Для установок средней и крупной производительности широко применяются кожухозмеевиковые регенеративные теплообмен­ники. В аппаратах этого типа жидкостный змеевик (или несколько параллельных змеевиков), навитый вокруг вытеснителя, помещен в цилиндрический сосуд. Пар проходит в кольцевом пространстве между вытеснителем и кожухом, при этом обеспечивается более полное омывание паром поверхности жидкостного змеевика. Змеевик производится из гладких, а чаще из оребренных снаружи труб.

При использовании теплообменников типа «труба в трубе» (как правило, для малых холодильных машин) особое внимание уделяют интенсификации теплообмена в аппарате. С этой целью либо применяют оребренные трубы, либо используют всевозмож­ные вставки (проволочные, ленточные и т. д.) в паровой области или в паровой и жидкостной областях (рис. 2) .

Рис.2. Теплообменник регенеративный типа «труба в трубе»

Fig. 2. Regenerative heat exchanger type “pipe in pipe”

Переохлаждение за счет кипения жидкого холодильного агента при промежуточном давлении может осуществляться в промежуточных сосудах и экономайзерах.

В низкотемпературных холодильных установках двухступенча­того сжатия работа промежуточного сосуда, устанавливаемого между компрессорами первой и второй ступеней, во многом опре­деляет термодинамическое совершенство и экономичность работы всей холодильной установки. Промежуточный сосуд выполняет следующие функции:

1) «сбив» перегрева пара после компрессора первой ступени, что приводит к уменьшению работы, затрачиваемой ступенью высокого давления;


2) охлаждение жидкого хладагента перед поступлением его к регулирующему вентилю до температуры, близкой или равной температуре насыщения при промежуточном давлении, что обеспечивает снижение потерь в регулирующем вентиле;

3) частичное отделение масла.

В зависимости от типа промежуточного сосуда (змеевиковый или беззмеевиковый) осуществляется схема с одно - или двухступенчатым дросселированием жидкого хладагента. В безнасосных системах предпочтительным является при­менение змеевиковых промежуточных сосудов, в которых жидкость находится под давлением конденсации, обеспечивающим подачу жидкого хладагента в испарительную систему многоэтажных холодильников.

Наличие змеевика исключает также дополнительное замасли­вание жидкости в промежуточном сосуде.

В насосно-циркуляционных системах, где подача жидкости в испарительную систему обеспечивается за счет напора насоса, могут быть применены беззмеевиковые промежуточные сосуды. Использование в настоящее время в схемах холодильных уста­новок эффективных маслоотделителей (промывных или циклонных на стороне нагнетания, гидроциклонов - в испарительной си­стеме) также делает возможным применение беззмеевиковых промежуточных сосудов - аппаратов более эффективных и более простых в конструктивном исполнении .

Переохлаждение водой может достигаться в противоточных переохладителях.

На рис. 3 показан двухтрубный противоточный переохла­дитель. Он состоит из одной или двух секций, собранных из по­следовательно включенных двойных труб (труба в трубе). Внутрен­ние трубы соединены чугунными калачами, наружные - сварены. Жидкое рабочее вещество протекает в межтрубном пространстве в противоток охлаждающей воде, движущейся по внутренним тру­бам. Трубы - стальные бесшовные. Температура выхода рабочего вещества из аппарата обычно на 2-3 °С выше температуры посту­пающей охлаждающей воды .

труба в трубе"), в каждую из которых через распределитель подается жидкий хладагент, а в межтрубное пространство поступает холодильный агент из линейного ресивера, основным недостатком является ограниченный срок службы из-за быстрого выхода из строя распределителя. Промежуточный сосуд, в свою очередь, можно использовать только для систем охлаждения , работающих на аммиаке .



Рис. 4. Эскиз переохладителя жидкого фреона с кипением в межтрубном пространстве

Fig. 4. The sketch of supercooler with boiling of liquid Freon in intertubes space

Наиболее подходящим устройством является переохладитель жидкого фреона с кипением в межтрубном пространстве. Схема такого переохладителя представлена на рис. 4.

Конструктивно он представляет собой кожухотрубный теплообменный аппарат, в межтрубном пространстве которого кипит холодильный агент, в трубы поступает хладагент из линейного ресивера, переохлаждается и затем подается к испарителю. Основным недостатком такого переохладителя является вспенивание жидкого фреона за счет образования масляной пленки на его поверхности, что приводит к необходимости наличия специального устройства для удаления масла.

Таким образом, была разработана конструкция, в которой предлагается переохлаждаемый жидкий холодильный агент из линейного ресивера подавать в межтрубное пространство, а в трубах обеспечить (путем предварительного дросселирования) кипение холодильного агента. Данное техническое решение поясняется рис. 5.

Рис. 5. Эскиз переохладителя жидкого фреона с кипением внутри труб

Fig. 5. The sketch of supercooler with boiling of liquid Freon inside pipes

Данная схема устройства позволяет упростить конструкцию переохладителя, исключая из нее устройство для удаления масла с поверхности жидкого фреона.

Предлагаемый переохладитель жидкого фреона (экономайзер) представляет собой корпус, содержащий пакет теплообменных труб с внутренним оребрением, также патрубок для входа охлаждаемого хладагента, патрубок для выхода охлажденного хладагента, патрубки для входа сдросселированного хладагента, патрубок для выхода парообразного хладагента.

Рекомендуемая конструкция позволяет избежать вспенивания жидкого фреона, повысить надежность и обеспечить более интенсивное переохлаждение жидкого хладагента, что, в свою очередь, ведет к увеличению холодопроизводительности холодильной установки.

СПИСОК ИСПОЛЬЗОВАННЫХ ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ

1. Зеликовский по теплообменным аппаратам малых холодильных машин. - М.: Пищевая промышленность, 19с.

2. Ионов производства холода. - Калининград: Кн. изд-во, 19с.

3. Данилова аппараты холодильных установок. - М.: Агропромиздат, 19с.

IMPROVING THE EFFICIENCY OF REFRIGERATING PLANTS DUE SUPERCOOLING OF REFRIGERANT

N. V. Lubimov, Y. N. Slastichin, N. M. Ivanova

Supercooling of liquid Freon in front of the evaporator allows to increase refrigerating capacity of a refrigerating machinery. For this purpose we can use regenerative heat exchangers and supercoolers. But more effective is the supercooler with boiling of liquid Freon inside pipes.

кefrigerating capacity, supercooling, supercooler


2.1. НОРМАЛЬНАЯ РАБОТА

Рассмотрим схему на рис. 2.1, представляющую конденсатор воздушного охлаждения при нормальной работе в разрезе. Допустим, что в конденсатор поступает хладагент R22.

Точка А. Пары R22, перегретые до температуры около 70°С, покидают нагнетающий патрубок компрессора и попадают в конденсатор при давлении около 14 бар.

Линия А-В. Перегрев паров снижается при постоянном давлении.

Точка В. Появляются первые капли жидкости R22. Температура равна 38°С, давление по-прежнему около 14 бар.

Линия В-С. Молекулы газа продолжают конденсироваться. Появляется все больше и больше жидкости, остается все меньше и меньше паров.
Давление и температура остаются постоянными (14 бар и 38°С) в соответствии с соотношением "давление-температура" для R22.

Точка С. Последние молекулы газа конденсируются при температуре 38°С, кроме жидкости в контуре ничего нет. Температура и давление остаются постоянными, составляя около 38°С и 14 бар соответственно.

Линия C-D . Весь хладагент сконденсировался, жидкость под действием воздуха, охлаждающего конденсатор с помощью вентилятора, продолжает охлаждаться.

Точка D. R22 на выходе из конденсатора только в жидкой фазе. Давление, по-прежнему около 14 бар, но температура жидкости понизилась примерно до 32°С.

Поведение смесевых хладагентов типа гидрохлорфторугперодов (ГХФУ) с большим температурным глайдом см. в пункте Б раздела 58.
Поведение хладагентов типа гидрофторуглеродов (ГФУ), например, R407C и R410A см. в разделе 102.

Изменение фазового состояния R22 в конденсаторе можно представить следующим образом (см. рис. 2.2).


От А до В. Снижение перегрева паров R22 от 70 до 38°С (зона А-В является зоной снятия перегрева в конденсаторе).

В точке В появляются первые капли жидкости R22.
От В до С. Конденсация R22 при 38 °С и 14 барах (зона В-С является зоной конденсации в конденсаторе).

В точке С сконденсировалась последняя молекула пара.
От С до D. Переохлаждение жидкого R22 от 38 до 32°С (зона C-D является зоной переохлаждения жидкого R22 в конденсаторе).

В течение всего этого процесса давление остается постоянным, равным показанию манометра ВД (в нашем случае 14 бар).
Рассмотрим теперь, как ведет себя при этом охлаждающий воздух (см. рис. 2.3).



Наружный воздух, который охлаждает конденсатор и поступает на вход с температурой 25°С, нагревается до 31 °С, отбирая тепло, выделяемое хладагентом.

Мы можем представить изменения температуры охлаждающего воздуха при его прохождении через конденсатор и температуру конденсатора в виде графика (см. рис. 2.4) где:


tae - температура воздуха на входе в конденсатор.

tas -температуравоздуха на выходе из конденсатора.

tK - температура конденсации, считываемая с манометра ВД.

А6 (читается: дельта тэта) разность (перепад) температур.

В общем случае в конденсаторах с воздушным охлаждением перепад температур по воздуху А0 = (tas - tae ) имеет значения от 5 до 10 К (в нашем примере 6 К).
Значение разности между температурой конденсации и температурой воздуха на выходе из конденсатора также имеет порядок от 5 до 10 К (в нашем примере 7 К).
Таким образом, полный температурный напор (tK - tae ) может составлять от 10 до 20 К (как правило, его значение находится вблизи 15 К, а в нашем примере он равен 13 К).

Понятие полного температурного напора очень важно, так как для данного конденсатора эта величина остается почти постоянной.

Используя величины, приведенные в вышеизложенном примере, можно говорить, что для температуры наружного воздуха на входе в конденсатор, равной 30°С (то есть tae = 30°С), температура конденсации tk должна быть равна:
tae + Дбполн = 30 + 13 = 43°С,
что будет соответствовать показанию манометра ВД около 15,5 бар для R22; 10,1 бар для R134a и 18,5 бар для R404A.

2.2. ПЕРЕОХЛАЖДЕНИЕ В КОНДЕНСАТОРАХ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ

Одной из наиболее важных характеристик при работе холодильного контура, вне всякого сомнения, является степень переохлаждения жидкости на выходе из конденсатора.

Переохлаждением жидкости будем называть разность между температурой конденсации жидкости при данном давлении и температурой самой жидкости при этом же давлении.

Мы знаем, что температура конденсации воды при атмосферном давлении равна 100°С. Следовательно, когда вы выпиваете стакан воды, имеющий температуру 20°С, с позиции теплофизики вы пьете воду, переохлажденную на 80 К!


В конденсаторе переохлаждение определяется как разность между температурой конденсации (считывается с манометра ВД) и температурой жидкости, измеряемой на выходе из конденсатора (или в ресивере).

В примере, приведенном на рис. 2.5, переохлаждение П/О = 38 - 32 = 6 К.
Нормальная величина переохлаждения хладагента в конденсаторах с воздушным охлаждением находится, как правило, в диапазоне от 4 до 7 К.

Когда величина переохлаждения выходит за пределы обычного диапазона температур, это часто указывает на аномальное течение рабочего процесса.
Поэтому ниже мы проанализируем различные случаи аномального переохлаждения.

2.3. АНАЛИЗ СЛУЧАЕВ АНОМАЛЬНОГО ПЕРЕОХЛАЖДЕНИЯ.

Одна из самых больших сложностей в работе ремонтника заключается в том, что он не может видеть процессов, происходящих внутри трубопроводов и в холодильном контуре. Тем не менее, измерение величины переохлаждения может позволить получить относительно точную картину поведения хладагента внутри контура.

Заметим, что большинство конструкторов выбирают размеры конденсаторов с воздушным охлаждением таким образом, чтобы обеспечить переохлаждение на выходе из конденсатора в диапазоне от 4 до 7 К. Рассмотрим, что происходит в конденсаторе, если величина переохлаждения выходит за пределы этого диапазона.

А) Пониженное переохлаждение (как правило, меньше 4 К).


На рис. 2.6 приведено различие в состоянии хладагента внутри конденсатора при нормальном и аномальном переохлаждении.
Температура в точках tB = tc = tE = 38°С = температуре конденсации tK. Замер температуры в точке D дает значение tD = 35 °С, переохлаждение 3 К.

Пояснение. Когда холодильный контур работает нормально, последние молекулы пара конденсируются в точке С. Далее жидкость продолжает охлаждаться и трубопровод по всей длине (зона C-D) заполняется жидкой фазой, что позволяет добиваться нормальной величины переохлаждения (например, 6 К).

В случае нехватки хладагента в конденсаторе, зона C-D залита жидкостью не полностью, имеется только небольшой участок этой зоны, полностью занятый жидкостью (зона E-D), и его длины недостаточно, чтобы обеспечить нормальное переохлаждение.
В результате, при измерении переохлаждения в точке D, вы обязательно получите его значение ниже нормального (в примере на рис. 2.6 - 3 К).
И чем меньше будет хладагента в установке, тем меньше будет его жидкой фазы на выходе из конденсатора и тем меньше будет его степень переохлаждения.
В пределе, при значительной нехватке хладагента в контуре холодильной установки, на выходе из конденсатора будет находиться парожидкостная смесь, температура которой будет равна температуре конденсации, то есть переохлаяедение будет равно О К (см. рис. 2.7).

Таким образом, недостаточная заправка хладагента всегда приводит к уменьшению переохлаждения.

Отсюда следует, что грамотный ремонтник не будет без оглядки добавлять хладагент в установку, не убедившись в отсутствии утечек и не удостоверившись, что переохлаждение аномально низко!

Отметим, что по мере дозаправки хладагента в контур, уровень жидкости в нижней части конденсатора будет повышаться, вызывая увеличение переохлаждения.
Перейдем теперь к рассмотрению противоположного явления, то есть слишком большого переохлаждения.

Б) Повышенное переохлаждение (как правило, больше 7 к).

Пояснение. Выше мы убедились, что недостаток хладагента в контуре приводит к уменьшению переохлаждения. С другой стороны, чрезмерное количество хладагента будет накапливаться в нижней части конденсатора.

В этом случае длина зоны конденсатора, полностью залитая жидкостью, увеличивается и может занимать весь участок E-D. Количество жидкости, находящееся в контакте с охлаждающим воздухом, возрастает и величина переохлаждения, следовательно, тоже становится больше (в примере на рис. 2.8 П/О = 9 К).

В заключение укажем, что измерения величины переохлаждения являются идеальными для диагностики процесса функционирования классической холодильной установки.
В ходе детального анализа типовых неисправностей мы увидим как в каждом конкретном случае безошибочно интерпретировать данные этих измерений.

Слишком малое переохлаждение (менее 4 К) свидетельствует о недостатке хладагента в конденсаторе. Повышенное переохлаждение (более 7 К) указывает на избыток хладагента в конденсаторе.

Под действием силы тяжести жидкость накапливается в нижней части конденсатора, поэтому вход паров в конденсатор всегда должен располагаться сверху. Следовательно, варианты 2 и 4 по меньшей мере представляют собой странное решение, которое не будет работоспособным.

Разница между вариантами 1 и 3 заключается, главным образом, в температуре воздуха, который обдувает зону переохлаждения. В 1-м варианте воздух, который обеспечивает переохлаждение, поступает в зону переохлаждения уже подогретым, поскольку он прошел через конденсатор. Наиболее удачной следует считать конструкцию 3-го варианта, так как в ней реализован теплообмен между хладагентом и воздухом по принципу противотока.

Этот вариант имеет наилучшие характеристики теплообмена и конструкции установки в целом.
Подумайте об этом, если вы еще не решили, какое направление прохождения охлаждающего воздуха (или воды) через конденсатор вам выбрать.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.