Молекулярная физика и термодинамика гришина. Молекулярная физика и термодинамика молекулярная физика и. Насыщенный пар, влажность

По онлайн-курсу возможно получение сертификата.

В курсе рассматриваются ключевые понятия и методы термодинамики и молекулярной физики как части курса общей физики, читаемого студентам Московского Физико-Технического Института. Прежде всего, вводятся основные термодинамические величины, понятия и постулаты. Рассматриваются основные термодинамические соотношения. Отдельные лекции посвящены теории фазовых переходов, модели газа Ван-Дер-Ваальса, поверхностным явлениям. Даются основные понятия статистической физики: микро- и макро состояние системы, статистическая сумма, функции распределения и др. Обсуждаются распределения Максвелла, Больцмана, Гибсса. Излагаются элементы теории теплоемкости газов. Выводятся выражения для флуктуаций основных термодинамических величин. Дается описание молекулярных процессов в газах: процессов переноса, диффузии и теплопроводности.

О курсе

Онлайн-курс содержит в себе обсуждение базовых физических вопросов, разбор задач, демонстрации физических экспериментов, без которых невозможно глубокое понимание общей физики. Для успешного освоения онлайн-курса слушателю желательно знать курс общей физики: "Механика" и владеть основами математического анализа, знать основы линейной алгебры и теории вероятностей.

Формат

Онлайн-курс содержит в себе теоретический материал, демонстрации ключевых термодинамических экспериментов, необходимые для правильного понимания явлений, разборы решений типовых задач, упражнения и задачи для самостоятельного решения

Седьмая, тринадцатая и восемнадцатая недели содержат контрольные задания для проверки.

Программа курса

Неделя 1
Основные понятия молекулярной физики и термодинамики: предмет исследования, его характерные особенности. Задачи молекулярной физики. Уравнения состояния. Давление идеального газа как функция кинетической энергии молекул. Соотношение между температурой идеального газа и кинетической энергией его молекул. Законы идеальных газов. Уравнения состояния идеального газа. Квазистатические, обратимые и необратимые термодинамические процессы. Нулевое начало термодинамики. Работа, теплота, внутренняя энергия. Первое начало термодинамики. Теплоёмкость. Теплоёмкость идеальных газов при постоянном объёме и постоянном давлении, уравнение Майера. Адиабатический и политропический процессы. Уравнение политропы для идеального газа. Адиабатический и политропический процессы. Независимость внутренней энергии идеального газа от объёма.

Неделя 2
Второе начало термодинамики. Формулировки второго начала. Тепловая машина. Определение КПД тепловой машины. Цикл Карно. Теорема Карно. Неравенство Клаузиуса. Максимальность КПД цикла Карно по сравнению с другими термодинамическими циклами. Холодильная машина. Эффективность холодильной машины. Тепловой насос. Эффективность теплового насоса, работающего по циклу Карно. Связь между коэффициентами эффективности теплового насоса и холодильной машины.

Неделя 3
Термодинамическое определение энтропии. Закон возрастания энтропии. Энтропия идеального газа. Энтропия в обратимых и необратимых процессах. Адиабатическое расширение идеального газа в вакуум. Объединённое уравнение первого и второго начал термодинамики. Третье начало термодинамики. Изменение энтропии и теплоёмкости при приближении температуры к абсолютному нулю.

Неделя 4
Термодинамические функции. Свойства термодинамических функций. Максимальная и минимальная работа. Преобразования термодинамических функций. Соотношения Максвелла. Зависимость внутренней энергии от объёма. Зависимость теплоёмкости от объёма. Соотношение между СP и СV. Теплофизические свойства твёрдых тел. Термодинамика деформации твёрдых тел. Изменение температуры при адиабатическом растяжении упругого стержня. Тепловое расширение как следствие ангармоничности колебаний в решётке. Коэффициент линейного расширения стержня.

Неделя 5
Условия термодинамического равновесия. Фазовые превращения. Фазовые переходы I и II рода. Химический потенциал. Условие равновесия фаз. Кривая фазового равновесия. Уравнение Клапейрона–Клаузиуса. Диаграмма состояния двухфазной системы «жидкость–пар». Зависимость теплоты фазового перехода от температуры. Критическая точка. Тройная точка. Диаграмма состояния «лёд–вода–пар». Поверхностные явления. Термодинамика поверхности. Свободная энергия поверхности. Краевые углы. Смачивание и несмачивание. Формула Лапласа. Зависимость давления пара от кривизны поверхности жидкости. Кипение. Роль зародышей при образовании новой фазы.

Неделя 6
Газ Ван-дер-Ваальса как модель реального газа. Изотермы газа Ван-дер-Ваальса. Метастабильные состояния. Перегретая жидкость и переохлаждённый пар. Правило Максвелла и правило рычага. Критические параметры и приведённое уравнение состояния газа Ван-дер-Ваальса. Внутренняя энергия газа Ван-дер-Ваальса. Уравнение адиабаты газа Ван-дер-Ваальса. Энтропия газа Ван-дер-Ваальса. Скорость звука в газах. Скорость истечения газа из отверстия. Эффект Джоуля–Томсона. Адиабатическое расширение, дросселирование. Получение низких температур.

Неделя 7
Проверочная

Неделя 8
Динамические и статистические закономерности. Макроскопические и микроскопические состояния. Фазовое пространство. Элементы теории вероятностей. Условие нормировки. Средние величины и дисперсия. Биномиальный закон распределения. Распределение Пуассона. Распределение Гаусса.

Неделя 9
Распределения Максвелла. Распределение частиц по компонентам скорости и абсолютным значениям скорости. Наиболее вероятная, средняя и среднеквадратичная скорости. Распределения Максвелла по энергиям. Среднее число ударов молекул, сталкивающихся в единицу времени с единичной площадкой. Средняя энергия молекул, вылетающих в вакуум через малое отверстие в сосуде.

Неделя 10
Распределение Больцмана в однородном поле сил. Барометрическая формула. Микро- и макросостояния. Статистический вес макросостояния. Статистическое определение энтропии. Энтропия при смешении газов. Парадокс Гиббса. Представление о распределении Гиббса. Статистическая сумма и её использование для нахождения внутренней энергии. Статистическая температура.

Неделя 11
Флуктуации. Средние значения энергии и дисперсии (среднеквадратичной флуктуации) энергии частицы. Флуктуации термодинамических величин. Флуктуация температуры в фиксированном объёме. Флуктуация объёма в изотермическом и адиабатическом процессах. Флуктуации аддитивных физических величин. Зависимость флуктуаций от числа частиц, составляющих систему.

Неделя 12
Теплоёмкость. Классическая теория теплоёмкостей. Закон равномерного распределения энергии теплового движения по степеням свободы. Теплоёмкость кристаллов (закон Дюлонга–Пти). Элементы квантовой теории теплоёмкостей. Характеристические температуры. Зависимость теплоёмкости от температуры.

Неделя 13
Столкновения. Эффективное газокинетическое сечение. Длина свободного пробега. Распределение молекул по длинам свободного пробега. Число столкновений молекул между собой. Явления переноса: вязкость, теплопроводность и диффузия. Законы Фика и Фурье. Коэффициенты вязкости, теплопроводности и диффузии в газах.

Неделя 14
Броуновское движение. Подвижность. Закон Эйнштейна–Смолуховского. Связь подвижности частицы и коэффициента диффузии. Явления переноса в разрежённых газах. Эффект Кнудсена. Эффузия. Течение разрежённого газа через прямолинейную трубу.

Неделя 15
Проверочная

Результаты обучения

В результате изучения дисциплины «Термодинамика» обучающийся должен:

  • Знать:
    • основные понятия, используемые в молекулярной физике, термодинамике;
    • смысл физических величин, используемых в молекулярной физике, термодинамике;
    • уравнения состояния идеального газа и газа Ван-дер-Ваальса;
    • распределения Больцмана и Максвелла, закон равномерного распределения энергии по степеням свободы;
    • нулевое, первое, второе и третье начала термодинамики, неравенство Клаузиуса, закон возрастания энтропии;
    • условия устойчивого термодинамического равновесия;
    • уравнение Клапейрона-Клаузиуса;
    • формулу Лапласа;
    • уравнения, описывающие процессы переноса (диффузии, вязкости,теплопроводности);
  • Уметь:
    • использовать основные положения молекулярно-кинетической теории газов для решения задач;
    • использовать законы молекулярной физики и термодинамики при описании равновесных состояний тепловых процессов и процессов переноса;
  • Владеть:
    • методами расчёта параметров состояния вещества;
    • методами расчёта работы, количества теплоты и внутренней энергии;

Формируемые компетенции

  • способность анализировать научные проблемы и физические процессы, использовать на практике фундаментальные знания, полученные в области естественных наук (ОК-1)
  • способность осваивать новые проблематику, терминологию, методологию и овладевать научными знаниями, владением навыками самостоятельного обучения (ОК-2)
  • способность применять в своей профессиональной деятельности знания,полученные в области физических и математических дисциплин (ПК-1)
  • способность понимать сущность задач, поставленных в ходе профессиональной деятельности, и использовать соответствующий физико-математический аппарат для их описания и решения (ПК-3)
  • способность использовать знания в области физических и математических дисциплин для дальнейшего освоения дисциплин в соответствии с профилем подготовки (ПК-4)
  • способность применять теорию и методы математики, физики и информатики для построения качественных и количественных моделей (ПК-8)

Молекулярная физика. Термодинамика.

1.Статистический и термодинамический методы

2.Молекулярно-кинетическая теория идеальных газов

2.1.Основные определения

2.2.Опытные законы идеального газа

2.3.Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева

2.4.Основное уравнение молекулярно-кинетической теории идеального газа

2.5.Распределение Максвелла

2.6.Распределение Больцмана

3.Термодинамика

3.1.Внутренняя энергия. Закон равномерного распределения энергии по степеням свободы

3.2.Первое начало термодинамики

3.3.Работа газа при изменении его объема

3.4.Теплоемкость

3.5.Первое начало термодинамики и изопроцессы

3.5.1.Изохорный процесс (V = const)

3.5.2.Изобарный процесс (p = const)

3.5.3.Изотермический процесс (T = const)

3.5.4. Адиабатический процесс (dQ = 0)

3.5.5. Политропные процессы

3.6.Круговой процесс (цикл). Обратимые и необратимые процессы. Цикл Карно.

3.7.Второе начало термодинамики

3.8.Реальные газы

3.8.1.Силы межмолекулярного взаимодействия

3.8.2.Уравнение Ван-дер-Ваальса

3.8.3.Внутренняя энергия реального газа

3.8.4.Эффект Джоуля-Томсона. Сжижение газов.

1.Статистический и термодинамический методы

Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы , связанные с огромным числом содержащихся в телах атомов и молекул. Для изучения этих процессов применяют два принципиально различающихся (но взаимно дополняющих друг друга) метода: статистический (молекулярно-кинетический) и термодинамический.

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении. Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул . Законы поведения огромного числа молекул изучаются с помощью статистического метода , который основан на том, что свойства макроскопической системы определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т.д.). Например, температура тела определяется средней скоростью хаотического движения его молекул и нельзя говорить о температуре одной молекулы.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия , и процессы перехода между этими состояниями. Термодинамика не рассматривает микропроцессы , которые лежат в основе этих превращений, а основывается на двух началах термодинамики - фундаментальных законах, установленных экспериментальным путем.

Статистические методы физики не могут быть использованы во многих разделах физики и химии, тогда как термодинамические методы универсальны. Однако статистические методы позволяют устанавливать микроскопическое строение вещества, тогда как термодинамические методы лишь устанавливают связи между макроскопическими свойствами. Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь методами исследования.

2.Молекулярно-кинетическая теория идеальных газов

2.1.Основные определения

Объектом исследования в молекулярно-кинетической теории является газ. Считается, что молекулы газа, совершая беспорядоченые движения, не связаны силами взаимодействия и поэтому они движутся свободно, стремясь, в результате соударений, разлететься во все стороны, заполняя весь предоставленный им объем. Таким образом, газ принимает объем того сосуда, который газ занимает.

Идеальный газ - это газ, для которого: собственный объем его молекул пренебрежимо мал по сравнению с объемом сосуда; между молекулами газа отсутствуют силы взаимодействия; столкновения молекул газа между собой и со стенками сосуда абсолютно упругие. Для многих реальных газов модель идеального газа хорошо описывает их макро свойства.

Термодинамическая система - совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой).

Состояние системы - совокупность физических величин (термодинамических параметров, параметров состояния) , которые характеризуют свойства термодинамической системы: температура, давление, удельный объем.

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В системе СИ разрешено использование термодинамической и практической шкалы температур . В термодинамической шкале тройная точка воды (температура, при которой лед, вода и пар при давлении 609 Па находятся в термодинамическом равновесии) считается равной Т = 273.16 градуса Кельвина [K]. В практической шкале температуры замерзания и кипения воды при давлении 101300 Па считаются равными, соответственно, t = 0 и t =100 градусов Цельсия [C ]. Эти температуры связаны между собой соотношением

Температура Т = 0 К называется нулем Кельвин, согласно современным представлениям эта температура недостижима, хотя приближение к ней сколь угодно близко возможно.

Давление - физическая величина, определяемая нормальной силой F, действующей со стороны газа (жидкости) на единичную площадку, помещенную внутрь газа (жидкости) p = F/S, где S - размер площадки. Единица давления - паскаль [Па]: 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м 2 (1 Па = 1 Н/м 2).

Удельный объем - это объем единицы массы v = V/m = 1/r, где V - объем массы m, r - плотность однородного тела. Поскольку для однородного тела v ~ V, то макроскопические свойства однородного тела можно характеризовать как v, так и V.

Термодинамический процесс - любое изменение в термодинамической системе, приводящее к изменению хотя бы одного из ее термодинамических параметров. Термодинамическое равновесие - такое состояние макроскопической системы, когда ее термодинамические параметры не изменяются с течением времени. Равновесные процессы - процессы, которые протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало.

Изопроцессы - это равновесные процессы, при которых один из основных параметров состояния сохраняется постоянным. Изобарный процесс - процесс, протекающий при постоянном давлении (в координатах V,t он изображается изобарой ). Изохорный процесс - процесс, протекающий при постоянном объеме (в координатах p,t он изображается изохорой ). Изотермический процесс - процесс, протекающий при постоянной температуре (в координатах p,V он изображается изотермой ). Адиабатический процесс - это процесс, при котором отсутствует теплообмен между системой и окружающей средой (в координатах p,V он изображается адиабатой ).

Постоянная (число) Авогадро - число молекул в одном моле N A =6.022 . 10 23 .

Нормальные условия : p = 101300 Па, Т = 273.16 К.

ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Статистический и т/д методы исследования .

Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул.

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства веществ, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям:

1. Любое тело - твердое, жидкое или газообразное состоит из большого количества весьма малых обособленных частиц-молекул.

2. Молекулы всякого вещества находятся в бесконечном хаотическом движении (например, броуновское движение).

3. Используется идеализированная модель идеального газа, согласно которой:

а). Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда (разреженность).

б). Между молекулами отсутствуют силы взаимодействия.

в). Столкновение молекул газа между собой и со стенками сосуда абсолютно упругие.

4. Макроскопические свойства тел (давление, температура и др.) описываются с помощью статистических методов, основным понятием которых является статистический ансамбль, т.е. описывается поведения большого числа частиц через введение средних характеристик (средняя скорость, энергия) всего ансамбля, а не отдельной частицы.

Термодинамика в отличие от молекулярно-кинетической теории изучает макроскопические свойства тел, не интересуясь их макроскопической картиной.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями.

В основе термодинамики лежат 3 фундаментальных закона, называемых началами термодинамики, установленных на основании обобщения большой совокупности опытных фактов.

Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.

Термодинамическая система - совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами. Состояние системы задается термодинамическими параметрами - совокупность физических величин, характеризующих свойства термодинамической системы, обычно в качестве параметров состояния выбирающих температуру, давление и удельный объем.

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

[ T ] = K - термодинамическая шкала, [ t ] = ° C - международная практическая шкала. Связь термодинамической и м/н практической температуры: Т = t + 273, например, при t = 20 ° C T = 293 K .

Удельный обьем - это обьем единицы массы. Когда тело однородно т. е. ρ = const , то макроскопические свойства однородного тела могут характеризовать обьем тела V .

Молекулярно-кинетическая теория (м. к. т) идеальных газов.

§1 Закон идеальных газов .

В молекулярно - кинетической теории используется идеализированная модель идеального газа.

Идеальным газом называется газ, молекулы которого не взаимодействуют друг с другом на расстоянии и имеют ничтожно малые собственные размеры.

У реальных газов молекулы испытывают действия силы межмолекулярного взаимодействия. Однако H 2, He , O 2, N 2 при н. у. (Т=273К, Р=1,01 ·10 5 Па) можно приблизительно считать идеальным газом.

Процесс, при котором один из параметров (p , V , T , S ) остаются постоянными, называются изопроцессами.

  1. Изотермический процесс Т= const , m = const , описываются законом Бойля-Мариотта :

pV = const

  1. Изобарический процес p = const описывается законом Гей-Люссака

V = V 0 (1+ α t );

V = V 0 α T

Терметический коэффициент обьемного расширения град -1

  1. Изохорический процесс V = const

Описывается законом Шарля

p = p 0 (1+ α t );

p = p 0 α T

Характеризует зависимость объёма от температуры. α равен относительному изменению объёма газа при нагревании его на 1 К. Как показывает опыт, одинаков для всех газов и равен .

4. Моль вещества. Число Авогадро. Закон Авогадро.

Атомной массой () химического элемента называется отношение массы атома этого элемента к 1/12 массы атома изотопа углерода С 12

ПРЕДИСЛОВИЕ

Молекулярная физика и термодинамика на фундаментальном уровне изучают общее понятие об энергии и ее превращениях, свойства и особенности вещества в различных условиях. Рассмотрение вопросов такого рода закладывает основу для освоения общетехнических и специальных дисциплин. В будущей практической деятельности выпускника вуза эти знания и навыки должны помочь в постановке и решении инженерных задач, а также освоении новых видов техники и оборудования.

В соответствии с этим, в учебном пособии последовательно вводятся основные понятия и величины, характеризующие тепловые явления, а также взаимосвязь между ними. Рассмотрены особенности классической статистики, распределение Максвелла-Больцмана, явления переноса, понятие квантовой электроники и плазмы, фазовых превращений.

На основе первого и второго начал рассмотрены основы термодинамики.

Текст сопровождается примерами решения задач по соответствующим темам.

В приложении приведены физические постоянные, некоторые математические соотношения, а также вопросы и задачи для проведения коллоквиумов или самостоятельной работы студентов.

Отсутствующий здесь материал, связанный с квантовой статистикой и физикой твердого тела имеется в ранее опубликованном нами пособии (3).

В пособии используется стандартная система единиц СИ, хотя в примерах даются нестандартные единицы (кал, атм, мм. рт. ст. и др.).

ВВЕДЕНИЕ

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Молекулярная физика - раздел физики, изучающий строение и свойства вещества, исходя из вытекающих из опыта представлений о том, что любое тело состоит из большого числа частиц (атомов или молекул), находящихся в непрерывном хаотическом тепловом движении . В механике движение тела однозначно определяется начальными условиями и силами, действующими на тело. Зная эти величины, можно вычислить положение тела в любой момент времени. Такие явления описываются динамическими закономерностями. В молекулярной физике рассматриваются явления, вызванные действием огромного числа частиц. При движении такого огромного числа частиц, координаты и скорости которых постоянно меняются, рассчитать движение каждого из огромного числа атомов или молекул невозможно даже на компьютере, поэтому в данном случае проявляются вероятностные или статистические закономерности, изучаемые методами статистической физики. Это означает, что законы молекулярной физики нельзя свести к законам механики. В статистической физике рассматривается конкретная молекулярная модель и к ней применяются математические методы статистики и теории вероятностей. Следовательно, для исследования используется статистический метод.


Статистический метод основан на законах теории вероятностей и математической статистики.

Статистическая физика рассматривает равновесное состояние - состояние, при котором макроскопические параметры не меняются со временем.

Методами статистической физики изучается, например, диффузия, теплопроводность, теплоемкость - явления, которые полностью определяются строением вещества. Макроскопические процессы в телах, состоящих из большого числа частиц, изучает так же термодинамика.

Термодинамика - раздел физики, изучающий связь и взаимопревращения различных видов энергии, теплоты и работы.

Термодинамика не рассматривает конкретные молекулярные модели. На основе опытных данных формулируются основные законы или начала термодинамики. Эти законы и следствия из них применяются к конкретным физическим явлениям, связанным с макроскопическими превращениями энергии, т.е. не с процессами, происходящими с отдельными атомами и молекулами, а с телами, состоящими из очень большого числа частиц.

Таким образом, предмет у термодинамики и статистической физики один и тот же, различаются лишь методы, которые взаимно дополняют друг друга.

Термодинамика рассматривает термодинамические системы . Системой называют совокупность физических объектов, заключенных в конечной области пространства. Термодинамической системой называется совокупность макроскопических тел и полей, обменивающихся энергией и веществом друг с другом и с внешней средой. Система может состоять и из одного тела. Признаки, характеризующие систему, например, давление, температура, плотность и ряд других, называются термодинамическими параметрами или параметрами состояния. Обычно подбирается минимальное число параметров, которые полностью описывают состояние системы.

Различают экстенсивные параметры, величины которых, завися от количества вещества и интенсивные параметры, величины которых, не зависят от количества вещества. Примером экстенсивной величины является энергия, интенсивной - плотность, температура. Обычно экстенсивные параметры обозначают прописными буквами, а интенсивные - строчными.

Совокупность всех термодинамических параметров задает термодинамическое состояние системы. Уравнение состояния связывает минимальное число термодинамических параметров, необходимое для описания как самого состояния системы, так и других параметров. Термодинамический метод основан на определении состояния термодинамической системы.

Статистические и термодинамические методы являются эффективными методами исследования любых систем, состоящих из большого числа частиц, а не только молекулярных систем. Это означает, что эти методы являются общефизическими методами исследования, а молекулярная физика выступает лишь в качестве одной из областей их применения.

В природе происходят явления, внешне весьма косвенно связанные с механическим движением. Они наблюдаются при изменении температуры тел или при переходе веществ из одного состояния (например, жидкого) в другое (твердое или газообразное). Такие явления называются тепловыми .

Тепловые явления играют огромную роль в жизни людей, животных и растений. От температуры окружающей среды зависит возможность жизни на Земле. Сезонные изменения температуры определяют ритмы живой природы - зимой жизнь растений замирает, многие животные впадают в спячку. Весной же природа пробуждается, зеленеют луга, цветут деревья.

Изменения температуры влияют на свойства тел. При нагревании и охлаждении изменяется объем жидкостей и газов и размеры твердых тел.

Тепловые явления подчиняются определенным законам, знание которых позволяет использовать эти явления в технике и в быту. Современные тепловые двигатели, холодильные установки, газопроводы и другие устройства функционируют на основе этих законов.

Молекулярная физика и термодинамика

Молекулярная физика и термодинамика изучают поведение систем, состоящих из большого числа частиц.

ОПРЕДЕЛЕНИЕ

Молекулярная физика - раздел физики, изучающий физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения.

Молекулярная физика рассматривает строение и свойства газов, жидкостей, твердых тел, их взаимные превращения, а также изменения, которые происходят в их внутренней структуре и поведении при изменении внешних условий.

ОПРЕДЕЛЕНИЕ

Термодинамика — раздел физики, изучающий свойства системы взаимодействующих тел путём анализа условий и качественных соотношений происходящих в системе превращений энергии.

Отличие молекулярной (или статистической) физики от термодинамики состоит в том, что эти два раздела физики рассматривают тепловые явления с разных точек зрения и используют при этом различные методы.

Молекулярная физика устанавливает законы, согласно которым протекают различные процессы в телах на основе изучения их молекулярной структуры и механизма взаимодействия отдельных молекул между собой. Термодинамика изучает свойства тел без учета молекулярных явлений, которые в них происходят.

Молекулярная физика использует статистический метод , который рассматривает движение и взаимодействие молекул в целом, а не каждой молекулы в отдельности.

Термодинамика пользуется термодинамическим методом , который рассматривает все процессы с точки зрения преобразования энергии. В отличие от статистического, термодинамический метод не связан с какими-либо конкретными представлениями о внутреннем строении тел и характере движения образующих эти тела молекул. Законы термодинамики установлены опытным путем при изучении оптимального использования теплоты для совершения работы.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.