Период полураспада радиоактивных элементов - что это такое и как его определяют? Формула периода полураспада. Определение периода полураспада долгоживущего изотопа

Для характеристики скорости распада радиоактивных элементов используют особую величину - период полураспада. Для каждого радиоактивного изотопа существует определенный интервал времени, в течение которого активность снижается в два раза. Этот интервал времени и носит название период полураспада.


Период полураспада (Т½) - это время, в течении которого распадается половина исходного количества радиоактивных ядер. Период полураспада - величина строго индивидуальная для каждого радиоизотопа. У одного и того же элемента могут быть с разными периодами полураспада. Имеются с периодом полураспада от долей секунды до миллиардов лет (от 3х10-7 с до 5х1015 лет). Так для полония-214 Т½ равен 1,6·10-4 с, для кадмия-113 - 9,3х1015 лет. Радиоактивные элементы подразделяются на короткоживущие (период полураспада исчисляется часами и днями) - родон-220 - 54,5 с, висмут-214 - 19,7 мин, иттрий-90 - 64 часа, стронций - 89 - 50,5 дня и долгоживущие (период полураспада исчисляется годами) - радий - 226 - 1600 лет, плутоний-239 - 24390 лет, рений-187 - 5х1010 лет, калий-40 - 1,32х109 лет.


Из элементов, выброшенных при аварии на ЧАЭС, отметим периоды полураспада следующих элементов: йод-131 - 8,05 дня, цезий-137 - 30 лет, стронций-90 - 29,12 лет, плутоний -241 - 14,4 года, америций-241 -
432 года.


Для каждого радиоактивного изотопа средняя скорость распада его ядер постоянная, неизменная и характерная только для данного изотопа. Количество радиоактивных атомов какого-либо элемента, распадающихся за промежуток времени пропорционально общему количеству имеющихся радиоактивных атомов.



где dN - количество распадающихся ядер,


dt - промежуток времени,


N - количество имеющихся ядер,


L - коэффициент пропорциональности (постоянная радиоактивного распада).


Постоянная радиоактивного распада показывает вероятность распада атомов радиоактивного вещества в единицу времени, характеризует долю атомов данного радионуклида, распадающихся в единицу времени, т.е. постоянная радиоактивного распада характеризует относительную скорость распада ядер данного радионуклида. Знак минус (-l) показывает, что количество радиоактивных ядер убывает со временем. Постоянную распада выражают в обратных единицах времени: с-1, мин-1 и т.д. Величину, обратную постоянной распада (r=1/l), называют средней продолжительностью жизни ядра.


Таким образом, закон радиоактивного распада устанавливает, что за единицу времени распадается всегда одна и та же доля нераспавшихся ядер данного радионуклида. Математический закон радиоактивного распада можно показать в виде формулы: λt


Nt = No х е-λt,


где Nt - количество радиоактивных ядер, остающихся по окончании времени t;


No - исходное количество радиоактивных ядер в момент времени t;


е - основание натуральных логорифмов (=2,72);


L - постоянная радиоактивного распада;


t - промежуток времени (равен t-to).


Т.е. число нераспавшихся ядер убывает со временем по экспоненте. По этой формуле можно рассчитать число нераспавшихся атомов в данный момент времени. Для характеристики скорости распада радиоактивных элементов на практике вместо постоянной распада пользуются периодом полураспада.


Особенность радиоактивного распада в том, что ядра одного и того же элемента распадаются не все сразу, а постепенно, в различное время. Момент распада каждого ядра не может быть предсказан заранее. Поэтому распад любого радиоактивного элемента подчиняется статистическим закономерностям, носит вероятностный характер и может быть математически определен для большого количества радиоактивных атомов. Иными словами, распад ядер происходит неравномерно - то большими, то меньшими порциями. Из этого следует практический вывод, что при одном и том же времени измерения числа импульсов от радиоактивного препарата мы можем получить разные значения. Следовательно, для получения верных данных необходимо измерения одной и той же пробы проводить не один, а несколько раз, и чем больше, тем точнее будут результаты.

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название "радиоактивность".

Вводим характеристики радиоактивности

Данный процесс - самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе называют активность.

Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N - число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название "период полураспада". В чем смысл введения этого понятия?

полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада - это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

0,001 секунд

бета, гамма

альфа, гамма

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t 2 - t 1 , где моменты начала и окончания наблюдения достаточно близки. Допустим, что n - число атомов, распавшихся в данный временной интервал, тогда n = KN(t 2 - t 1).

В данном выражении K = 0,693/T½ - коэффициент пропорциональности, называющийся константой распада. T½ - период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

Пусть N 0 - количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N 0 /2.

По прошествии еще одного периода полураспада в образце остаются: N=N 0 /4=N 0 /2 2 активных атомов.

По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N 0 /8=N 0 /2 3 .

К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N 0 /2 n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N 0 2 - t/ T½ .

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A 0 .2 -t/T . В этой формуле А 0 - активность образца в начальный момент времени, А - активность по истечении t секунд, Т - период полураспада.

Масса вещества может быть использована в закономерности: m=m 0 .2 -t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов - величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T 1/2 /ln2= T 1/2 /0,693=1/ λ.

В этой записи τ - среднее время жизни, λ - постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония - в зависимости от его изотопа - лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада - 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений "уран - торий", содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Период полураспада (T 1/2) - время, в течение которого квантовомеханическая система (ядро атома, элементарная частица, энергетический уровень и т.п.) распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество частиц, оставшихся уменьшается в среднем вдвое.

Иногда период полураспада называют также полупериодом распада. Но не следует считать, что за два периода полураспада распадутся все частицы, имеющиеся в начальный момент времени. Поскольку в течение каждого периода полураспада число частиц уменьшается вдвое, то после двух периодов останется четверть от начального числа частиц, за 3 T 1/2 - одна восьмая и т.д. Вообще, доля частиц, остающихся (или, точнее, вероятность "выживания" p для одной частицы), зависит от времени t следующим образом:

Если для заданного момента времени обозначить число частиц, способных к распаду через N, а промежуток времени через t 2 - t 1, где t 1 и t 2 - достаточно близкие моменты времени (t 1 2), то количество частиц, распадутся течение этого времени составит n = λN (t 2 - t 1), где коэффициент пропорциональности λ носит название константы распада. Если считать интервал времени наблюдения (t 2 - t 1) равным единице, то λ = n / N и, следовательно, константа распада показывает долю от имеющегося числа частиц, распадающихся в единицу времени.

Период полураспада, средний время жизни τ и константа распада λ связаны следующими соотношениями:

Поскольку ln2 = 0,693 ..., период полураспада примерно на 30% короче, чем средний (вероятный) время жизни.

Чаще всего термин используют как характеристику нестабильных изотопов химических элементов . Величины периодов полураспада для различных изотопов разные, для одних изотопов быстро распадаются, период полураспада может быть равным миллионным долям секунды, а для других изотопов, таких как 238 или 232 , он равен 4,5 млрд. лет и 14 млрд. лет соответственно.


Пример

Можно подсчитать число ядер урана-238, которые распадаются в течение секунды, в заданном количестве урана, например, в одном килограмме. Количество любого элемента в граммах, численно равная атомной массе (моль), содержит, как известно, 6 ? 23 октября атомов. Поэтому согласно приведенной выше формуле n = λN (t 2 - t 1) найдем количество ядер, распадающихся ежесекундно (в одном году 365 ? 24 ? 60 ? 60 секунд):

Вычисления показывают, что в одном килограмме урана в течение одной секунды распадается около двенадцати миллионов ядер. Несмотря на такое огромное число, все же скорость превращения ничтожно мала. Действительно, в секунду распадается доля:

Таким образом, из имеющегося количества урана в одну секунду распадается доля, равная

Обращаясь вновь к основному закону радиоактивного распада λN (t 2 - t 1), т.е. к тому факту, что из имеющегося числа атомных ядер в единицу времени распадается одна и та же их доля и, несмотря на полную независимость атомных ядер в веществе, можно сказать, что этот закон является статистическим в том смысле, что он не указывает, какие именно атомные ядра распадутся в данный отрезок времени, а говорит лишь об их число. Некоторые из атомных ядер распадутся в ближайший момент, тогда как другие ядра испытывать преобразования значительно позже. Несомненно, этот закон действует только в случае, когда имеющееся число ядер достаточно велико. Но когда имеющееся число радиоактивных атомных ядер сравнительно небольшое закон радиоактивного распада может и не выполняться во всей строгости.


Парциальное период полураспада

Некоторые системы могут распадаться по нескольким каналам, например ядро ​​урана может распадаться как путем деления, так и путем излучения альфа-частиц. Для каждого из каналов можно определить парциальное период полураспада . Он имеет смысл периода полураспада, который был бы в данной системе, если "выключить" все каналы распада, кроме i-го.

Пусть вероятность распада за i-м каналом (коэффициент разветвления) равна p i. Тогда парциальное период полураспада по i-му каналу равен

.

Поскольку, по определению, , То для любого канала распада.

>> Закон радиоактивного распада. Период полураспада

§ 101 ЗАКОН РАДИОАКТИВНОГО РАСПАДА. ПЕРИОД ПОЛУРАСПАДА

Радиоактивный распад подчиняется статистическому закону. Резерфорд , исследуя превращения радиоактивных веществ, установил опытным путем, что их активность убывает с течением времени. Об этом говорилось в предыдущем параграфе. Так, активность радона убывает в 2 раза уже через 1 мин. Активность таких элементов, как уран, торий и радий, тоже убывает со временем, но гораздо медленнее. Для каждого радиоактивного вещества существует определенный интервал времени, на протяжении которого активность убывает в 2 раза. Этот интервал носит название период полураспада. Период полураспада Т - это время, в течение которого распадается половина начального числа радиоактивных атомов.

Спад активности, т. е. числа распадов в секунду, в зависимости от времени для одного из радиоактивных препаратов изображен на рисунке 13.8. Период полураспада этого вещества равен 5 сут.

Выведем теперь математическую форму закона радиоактивного распада. Пусть число радиоактивных атомов в начальный момент времени (t= 0) равно N 0 . Тогда по истечении периода полураспада это число будет равно

Спустя еще один такой же интервал времени это число станет равным:

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Полураспад

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) - время T ½ , в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T ½ останется четверть от начального числа частиц, за 3T ½ - одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

Период полураспада, среднее время жизни τ и константа распада λ связаны следующими соотношениями:

.

Поскольку ln2 = 0,693… , период полураспада примерно на 30 % короче, чем время жизни.

Иногда период полураспада называют также полупериодом распада.

Пример

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N , а промежуток времени через t 2 - t 1 , где t 1 и t 2 - достаточно близкие моменты времени (t 1 < t 2), и число разлагающихся атомных ядер в этот отрезок времени через n , то n = KN (t 2 - t 1). Где коэффициент пропорциональности K = 0,693/T ½ носит название константы распада. Если принять разность (t 2 - t 1) равной единице, то есть интервал времени наблюдения равным единице, то K = n /N и, следовательно, константа распада показывает долю от наличного числа атомных ядер, испытывающих распад в единицу времени. Следовательно, распад совершается так, что в единицу времени распадается одна и та же доля от наличного числа атомных ядер, что определяет закон экспоненциального распада.

Величины периодов полураспада для различных изотопов различны; для некоторых, особенно быстро распадающихся, период полураспада может быть равным миллионным долям секунды, а для некоторых изотопов, как уран 238 и торий 232, он соответственно равен 4,498*10 9 и 1,389*10 10 лет. Легко подсчитать число атомов урана 238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02*10 23 атомов. Поэтому согласно приведённой выше формуле n = KN (t 2 - t 1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,

.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

.

Обращаясь опять к основному закону радиоактивного распада KN (t 2 - t 1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Парциальный период полураспада

Если система с периодом полураспада T 1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада . Пусть вероятность распада по i -му каналу (коэффициент ветвления) равна p i . Тогда парциальный период полураспада по i -му каналу равен

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i -го. Так как по определению , то для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами , а также представителями т. н. «альтернативной науки » для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм , Научный креационизм , Критика эволюционизма , Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.