Новости из мира разработки аккумуляторных батарей. Аккумуляторы, которых нет: новейшие разработки

Акции направленные на лояльность покупателей, можно разделить на несколько видов. Акции для торговых точек на увеличение клиентской базы, на увеличение объема продаж, на расширение ассортимента.

Например: Если у меня клиентская база 75 клиентов и я в этом месяце выполняю по АКБ (активная клиентская база сработавшая за 1 месяц, далее АКБ), то акция направленная на расширение АКБ будет не эффективной. Зачем мне лишние клиенты в этом месяце, я их лучше приберегу для следующего месяца. То есть акция будет эффективна только для тех торговых представителей, которые не набрали план по клиентской базе. Для тех же кто набрал план по клиентской базе логика будет проста, зачем мне делать больше плана клиентскую базу в этом месяце, если в следующем месяце мне повысят план по АКБ исходя не из предыдущего плана, а исходя из фактической АКБ в этом месяце, которая будет больше.

Акция по расширению АКБ звучит так: каждая новая точка за заказ на 1000 рублей получает в подарок продукцию на 200 рублей. Подарок лучше выбирать из ходовой продукции, чтобы он действительно был подарком. Выгода точки 20% от заказа. Ваш расчет на то, что с вами будут работать магазины взявшие товар по акции оправдается приблизительно на 80-90%, то есть если по акции взяли 100 магазинов, то постоянно будут работать с вами 80-90 магазинов. Остальные 10-20 магазинов опять возьмут продукт в следующей акции. Что делать, все ищут выгоду.

Приведу пример: менеджер хотел зимой увеличить активную клиентскую базу. Он сделал акцию на 4 дня 3+1, то есть если клиент берет три упаковки воды, то четвертая в подарок, но больше трех упаковок брать нельзя, и он сделал бонус торговым представителям 5000 рублей за лучший показатель. Представьте всего за 4 дня работы заработать 5000 рублей, это хорошие деньги к зарплате.

Я включился в акцию на 1 день позже, так как работал еще на одном районе области не попадавшим в акцию. Я ездил в течение трех дней и предлагал воду всем магазинам подряд, давая подарочную упаковку сразу при заказе, чтобы клиенты видели, что акция реальная, о том, что кто то возьмет упаковку, а заказ потом не примет я не беспокоился, потому что знал, что отказываются от заказа после получения подарка очень редко в итоге я набрал больше всех клиентов около 30 и заработал 5000 рублей. А менеджер в итоге получил прирост клиентской базы где то в 70 клиентов со всех торговых представителей, и это зимой, когда вода вообще не продается. Вот так, правильно менеджер использовал акцию.

В то же самое время если я не выполняю план по продажам, то мне нужна акция на расширение ассортимента и увеличение объема продаж. Акция на увеличение объема продаж будет выглядеть так. Клиент берет 5 упаковок продукта 6-ая упаковка в подарок, и можно брать любое количество упаковок.

Опять же зимой мы проводили акцию 5+1 по пиву и один клиент взял у меня продукции на 25% от моего плана. Эффективность таких акций очевидна, план я выполнил, главное чтобы это было выгодно самой компании. Обычно такие акции проводятся зимой потому что зимой сложнее выполнить план.

Читаем вопрос trudnopisaka :

"Интересно было бы узнать про новые технологии аккумуляторов, которые готовят к серийному производству. "

Ну конечно же критерий серийного производства несколько растяжимый, но давайте попробуем узнать, что сейчас перспективно.

Вот что придумали химики:


Напряжение ячейки в вольтах (по вертикали) и удельная ёмкость катода (мАч/г) новой батареи сразу после её изготовления (I), первого разряда (II) и первого заряда (III) (иллюстрация Hee Soo Kim et al./Nature Communications).

По своему энергетическому потенциалу батареи, основанные на сочетании магния и серы, способны обойти литиевые. Но до сих пор никто не мог заставить эти два вещества дружно работать в аккумуляторной ячейке. Теперь, с некоторыми оговорками, это удалось группе специалистов в США.

Учёные из тойотовского исследовательского института в Северной Америке (TRI-NA) попытались решить главную проблему, стоящую на пути создания магниево-серных батарей (Mg/S).

Подготовлено по материалам Тихоокеанской северо-западной национальной лаборатории .

Немцы изобрели фторид-ионную аккумуляторную батарею

В дополнение к целой армии электрохимических источников тока учёные разработали ещё один вариант. Его заявленные достоинства — меньшая пожароопасность и в десять раз большая удельная ёмкость, чем у литиево-ионных батарей.

Химики из технологического института Карлсруэ (KIT) предложили концепцию аккумуляторов на основе фторидов металлов и даже испытали несколько небольших лабораторных образцов.

В таких аккумуляторах за перенос зарядов между электродами отвечают анионы фтора. Анод и катод аккумулятора содержат металлы, которые в зависимости от направления тока (заряд или разряд) по очереди превращаются во фториды или восстанавливаются обратно до металлов.

«Поскольку один атом металла способен принять или отдать сразу несколько электронов, эта концепция позволяет достичь чрезвычайно высокой плотности энергии — до десяти раз выше, чем у обычных литиево-ионных батарей», — говорит один из авторов разработки доктор Максимилиан Фихтнер (Maximilian Fichtner).

Для проверки идеи немецкие исследователи создали несколько образцов таких батарей диаметром 7 миллиметров и толщиной 1 мм. Авторы изучили несколько материалов для электродов (медь и висмут в сочетании с углеродом, например), а электролит создали на основе лантана и бария.

Однако такой твёрдый электролит - это лишь промежуточный шаг. Данный состав, проводящий ионы фтора, хорошо работает только при высокой температуре. Потому химики ищут ему замену - жидкий электролит, который действовал бы при комнатной температуре.

(Подробности можно найти в пресс-релизе института и статье в Journal of Materials Chemistry.)

Аккумуляторы будущего

Что ждет рынок аккумуляторов в будущем, пока сложно прогнозировать. Литиевые батареи пока уверенно правят балом, и у них есть неплохой потенциал, благодаря литий-полимерным разработкам. Внедрение серебряно-цинковых элементов - весьма длительный и дорогостоящий процесс, и его целесообразность пока является дискуссионным вопросом. Технологии на основе топливных элементов и нанотрубок уже много лет восхваляются и описываются самым красивыми словами, однако когда дело доходит до практики, фактические продукты получаются либо слишком громоздкими, либо слишком дорогими, либо и то, и другое вместе взятое. Ясно лишь одно - в ближайшие годы данная отрасль будет продолжать активно развиваться, ведь популярность портативных устройств растет не по дням, а по часам.

Параллельно с ноутбуками, ориентированными на автономную работу, развивается направление настольных ноутов, в которых батарея скорее играет роль резервного ИБП. Недавно в Samsung выпустили подобный ноутбук и вовсе без батареи.

В NiCd -аккумуляторах также существует возможность электролиза. Чтобы в них не скапливался взрывоопасный водород, батареи оснащают микроскопическими клапанами.

В знаменитом институте MIT недавно была разработана уникальная технология производства литиевых аккумуляторов усилиями специально-обученных вирусов.

Несмотря на то, что топливный элемент внешне совершенно не похож на традиционную батарею, работает он по тем же принципам.


А кто еще подскажет какие нибудь перспективные направления?

Каждый год количество устройств в мире, которые работают от аккумуляторных батарей, неуклонно возрастает. Не секрет, что самым слабым звеном современных устройств являются именно аккумуляторы. Их приходиться регулярно подзаряжать, они обладают не такой большой емкостью. Существующие аккумуляторные батареи с трудом позволяют добиваться автономной работы планшета или мобильного компьютера в течение нескольких дней.

Поэтому производители электромобилей, планшетов и смартфонов сегодня заняты поиском возможностей сохранения значительных объемов энергии в более компактных объемах самого аккумулятора. Несмотря на разные требования, предъявляемые к батареям для электромобилей и мобильных устройств, между ними можно легко провести параллели. В частности, известный электрокар Tesla Roadster питается от литий-ионной батареи, разработанной специально для ноутбуков. Правда, для обеспечения электроэнергией спортивного автомобиля инженерам пришлось использовать более шести тысяч таких элементов питания одновременно.

Идет ли речь об электромобиле или мобильных устройствах, универсальные требования к аккумулятору будущего очевидны – он должен быть меньше, легче и накапливать значительно больше энергии. Какие перспективные разработки в этой области могут удовлетворить данные требования?

Литий-ионные и литиево-полимерные батареи

Литий-ионный аккумулятор фотоаппарата

На сегодняшний день в мобильных устройствах наибольшее распространение получили литий-ионные и литиево-полимерные батареи. Что касается литий-ионных аккумуляторов (Li-Ion), то они производятся еще с начала 90-х годов. Их главное преимущество – достаточно высокая энергетическая плотность, то есть способность сохранять определенный объем энергии на одну единицу массы. Кроме того, в таких батареях отсутствует пресловутый «эффект памяти» и имеется сравнительно низкий саморазряд.

Использование лития вполне обоснованно, ведь этот элемент обладает высоким электрохимическим потенциалом. Недостатком всех литиево-ионных батарей, коих на самом деле в настоящее время насчитывается большое количество видов, является достаточно быстрое старение аккумулятора, то есть резкое снижение характеристик при хранении или длительном использовании батареи. К тому же, потенциал емкости современных литий-ионных батарей, судя по всему, уже практически исчерпан.

Дальнейшим развитием литий-ионной технологии являются литиево-полимерные источники питания (Li-Pol). В них вместо жидкого электролита используется твердый материал. В сравнении со своим предшественником, литиево-полимерные батареи имеют более высокую энергетическую плотность. Вдобавок, теперь стало возможным производить батареи практически в любой форме (литий-ионная технология требовала только цилиндрической или прямоугольной формы корпуса). Такие батареи обладают небольшими габаритами, что позволяет с успехом применять их в различных мобильных устройствах.

Однако появление литиево-полимерных батарей кардинальным образом не изменило ситуацию, в частности, потому, что такие батареи не способны отдавать большие токи разряда, а их удельная емкость все же недостаточна, чтобы избавить человечество от необходимости постоянной подзарядки мобильных устройств. Плюс ко всему, литиево-полимерные аккумуляторы довольно «капризны» в эксплуатации, они имеют недостаточную прочность и склонность к возгоранию.

Перспективные технологии

В последние годы ученые и исследователи в различных странах активно работают над созданием более совершенных технологий аккумуляторных батарей, способных уже в ближайшем будущем прийти на смену существующим. В этом плане можно выделить несколько наиболее перспективных направлений:

— Литий-серные батареи (Li-S)

Литий-серный аккумулятор – перспективная технология, энергоемкость подобной батареи в два раза выше, чем у литий-ионных. Но в теории она может быть еще выше. В таком источнике питания используется жидкий катод с содержанием серы, при этом он отделен от электролита особой мембраной. Именно за счет взаимодействия литиевого анода и серосодержащего катода была существенно увеличена удельная емкость. Первый образец подобного аккумулятора появился еще в 2004 году. С того момента был достигнут определенный прогресс, благодаря чему усовершенствованный литий-серный аккумулятор способен выдерживать полторы тысячи циклов полной зарядки-разрядки без серьезных потерь в емкости.

К преимуществам данного аккумулятора также можно отнести возможность применения в широком диапазоне температур, отсутствие необходимости в использовании усиленных компонентов защиты и сравнительно низкую себестоимость. Интересный факт – именно благодаря применению такого аккумулятора в 2008 году был поставлен рекорд по продолжительности полета на воздушном судне на солнечных батареях. Но для массового выпуска литиево-серного аккумулятора ученым еще придется решить две основные проблемы. Требуется найти эффективный способ утилизации серы, а также обеспечить стабильную работу источника питания в условиях смены температурного или влажностного режима.

— Магниево-серные батареи (Mg/S)

Обойти традиционные литиевые батареи могут и аккумуляторы, базирующиеся на соединении магния и серы. Правда, до последнего времени никто не мог обеспечить взаимодействие этих элементов в одной ячейке. Сам магниево-серный аккумулятор выглядит очень интересным, ведь его энергетическая плотность может доходить до более чем 4000 Вт-ч/л. Не так давно благодаря американским исследователям, по всей видимости, удалось решить основную проблему, стоящую на пути разработки магниево-серных батарей. Дело в том, что для пары магний и сера не было никакого подходящего электролита, совместимого с этими химическими элементами.

Однако ученые сумели создать такой приемлемый электролит за счет образования особых кристаллических частиц, обеспечивающих стабилизацию электролита. Образец магниево-серного аккумулятора включает в себя анод из магния, сепаратор, катод из серы и новый электролит. Впрочем, это только первый шаг. Перспективный образец, к сожалению, пока не отличается долговечностью.

— Фторид-ионные батареи

Еще один интересный источник питания, появившийся в последние годы. Здесь за перенос зарядов между электродами отвечают анионы фтора. При этом анод и катод содержат металлы, преобразующиеся (в соответствии с направлением тока) во фториды, либо восстанавливающиеся обратно. Благодаря этому обеспечивается значительная емкость батареи. Ученые заявляют, такие источники питания имеют энергетическую плотность, в десятки раз превосходящую возможности литий-ионных батареек. Помимо значительной емкости, новые аккумуляторы также могут похвастаться существенно меньшей пожароопасностью.

На роль основы твердого электролита было перепробовано множество вариантов, но выбор, в конечном счете, остановился на лантане бария. Хотя фторид-ионная технология кажется очень перспективным решением, она не лишена недостатков. Ведь твердый электролит может стабильно функционировать лишь при высоких температурах. Поэтому перед исследователями стоит задача отыскать жидкий электролит, способный успешно работать при обычной комнатной температуре.

— Литий-воздушные батареи (Li-O2)

В наши дни человечество стремится к использованию более «чистых» источников энергии, связанных с генерацией энергии солнца, ветра или воды. В этом плане очень интересными представляются литий-воздушные батареи. В первую очередь, они рассматриваются многими экспертами в качестве будущего электромобилей, но с течением времени могут найти применение и в мобильных устройствах. Такие источники питания обладают очень высокой емкостью и при этом сравнительно малыми размерами. Принцип их работы следующий: вместо оксидов металла в позитивном электроде применяется углерод, который вступает в химическую реакцию с воздухом, в результате чего создается ток. То есть для выработки энергии здесь частично используется кислород.

Использование кислорода в качестве активного материала катода имеет свои существенные преимущества, ведь он является практически неисчерпаемым элементом, а самое главное, абсолютно бесплатно берется из окружающей среды. Считается, что плотность энергии у литий-воздушных батарей сможет достигать впечатляющей отметки в 10 000 Втч/кг. Может быть, в недалеком будущем подобные батареи смогут поставить электромобили в один ряд с машинами на бензиновом двигателе. Кстати, аккумуляторы подобного типа, выпущенные для мобильных гаджетов, уже можно встретить в продаже под названием PolyPlus.

— Литий-нанофосфатные батареи

Литий-нанофосфатные источники питания – это следующее поколение литиево-ионных батареек, которые характеризуются высокой отдачей тока и сверхбыстрой зарядкой. Для полной зарядки такой батареи требуется всего пятнадцать минут. Они также допускают в десять раз больше циклов зарядки в сравнении со стандартными литий-ионными элементами. Таких характеристик удалось добиться благодаря использованию особых наночастиц, способных обеспечить более интенсивный поток ионов.

К достоинствам литий-нанофосфатных батарей можно отнести также слабый саморазряд, отсутствие «эффекта памяти» и способность работать в условиях широкого диапазона температур. Литий-нанофосфатные батареи уже доступны в продаже и применяются для некоторых типов устройств, однако их распространению мешает необходимость в специальном зарядном устройстве и больший вес в сравнении с современными литий-ионными или литийево-полимерными аккумуляторами.

В действительности, перспективных технологий в области создания аккумуляторных батарей гораздо больше. Ученые и исследователи работают не только над созданием принципиально новых решений, но и над улучшением характеристик существующих литий-ионных батареек. Например, за счет использования кремниевых нанопроводов или разработки нового электрода, обладающего уникальной способностью к «самозаживлению». В любом случае уже не за горами тот день, когда наши телефоны и другие мобильные устройства будут жить целые недели без подзарядки.

Аккумулятор служит для накопления электрической энергии, выступая автономным источником электропитания. В основу действия аккумулятора положена обратимость химических процессов, которые происходят внутри него. Именно эта особенность позволяет использовать устройство многократно и циклически (постоянный заряд и разряд). Разряженный аккумулятор заряжают методом пропускания электрического тока в таком направлении, которое противоположно направлению тока при разряде аккумулятора. АКБ в процессе работы мотора заряжается от генератора прямо в подкапотном пространстве автомобиля.

Аккумуляторная батарея имеет корпус. В данном корпусе расположены перегородки, разделяющие батарею на ячейки (банки). Аккумулятор на 12 вольт, который чаще всего устанавливается на легковых автомобилях, включает в себя 6 ячеек. В каждой банке имеются небольшие блоки, которые соединены друг с другом.

В отдельном блоке имеются положительные и отрицательные электроды. Указанные электроды представляют собой пластины (решетки), которые изготовлены из свинца (на примере свинцового аккумулятора). Данные пластины покрыты особым активным составом. Между пластинами с положительными и отрицательными полюсами также находится разделитель (сепаратор). Сепараторы изготовлены из материалов, которые не пропускают электрический ток.

Правильная зарядка автомобильного аккумулятора зарядным устройством. Проверка перед зарядкой, каким током заряжать аккумулятор. Как зарядить АКБ без ЗУ.

  • Когда нужно заряжать необслуживаемый автомобильный аккумулятор. Как заряжать необслуживаемую АКБ зарядным устройством: сила тока, время зарядки. Советы.
  • Как измеряется плотность электролита в АКБ, от чего зависит данный показатель. Доступные способы повышения плотности в "банках" аккумулятора своими руками.


  • О простой детали автомобиля можно рассказать целую историю. А что говорить об аккумуляторной батарее (АКБ) . Тема настолько обширна, что занимает почти два столетия. Поэтому на страничке нашей статьи об аккумуляторной батарее постараемся хоть немного просмотреть эволюцию (АКБ).
    Потребность в появлении аккумуляторных батарей (АКБ) возникла с применением в двигателях внутреннего сгорания (ДВС) электрической искры. А это произошло в 1860 году, когда Ленуар создал двигатель внутреннего сгорания, впервые в составе силовой установки применили гальванические элементы Бунзена. Идею отложили на несколько лет не потому, что принцип батарейного зажигания был не целесообразен, а только по причине того, что элементы Бунзена были далеки от совершенства. Они обладали большим весом, хрупкостью в работе.
    На то время развитие двигателей внутреннего сгорания (ДВС) шло по пути применения зажигания при помощи открытого пламени, с которым в нужный момент соприкасалась горючая смесь.
    Сам же аккумуляторный эффект открыл еще в 1802 году Г.Риттер. Но, заметим - впервые аккумулятор понадобился для двигателя внутреннего сгорания, только как источник тока для искровых разрядов.
    Первым аккумулятором все же принято считать изобретение француза Гастона Планте. В 1859 году, он сделал открытие: при пропускании тока через свинцовые электроды, погружонные в разведенную серную кислоту, положительный электрод покрывался двуокисью свинца PbO2, в то время как отрицательный электрод не подвергался никаким изменениям. Если такой элемент замыкали потом накоротко, прекратив пропускание через него тока от постоянного источника, то в нем появлялся постоянный ток, который обнаруживался до тех пор, пока вся двуокись свинца не растворялась в кислоте.
    Первый аккумулятор состоял из двух одинаковых свинцовых полос навитых на деревянный цилиндр. Друг от друга они отделялись тканевой прокладкой. Все это укладывалось в сосуд с 10%-м раствором серной кислоты. Существенный недостаток аккумулятора Гастона Планте был в его небольшой емкости, он слишком быстро разряжался.
    Практического применения аккумуляторы не могли получить до 1879 года из-за отсутствия нужного количества зарядных устройств постоянного тока.
    Первая аккумуляторная батарея , похожая на нынешние, появилась в 1881 году (по другим данным в 1882г.) Камилл Фор значительно усовершенствовал технику изготовление аккумуляторных пластин. Формирование пластин происходило гораздо быстрее. Суть усовершенствования Фора заключалось в том, что он придумал покрывать каждую пластину суриком или другим окислом свинца.
    И вот грянула автомобильная лихорадка. После непродолжительных експерементов с различными типами систем воспламенения горючей смеси в цилиндрах конструкторы остановились на искровой системе зажигания, которая требовала бортового источника электроэнергии - АКБ. И здесь свинцово-кислотные аккумуляторные батареи пришлись как раз в пору. Преимущество в возможности подзарядки АКБ автомобилисты оценили сразу. На автомобилях того времени генератор отсутствовал, а все электрооборудование состояло из аккумуляторной батареи (или несколько сухих батареек) и простейшей системы зажигания. Позже сюда добавились электрические фары, заменившие масляные и ацетиленовые горелки.
    Генератор вместе со стартером появились только в начале второго десятилетия 20-го века. Первым автомобилем, оснащенным мотор генератором, был Cadillac 1912 года. На нем параллельно с 6-вольтовым свинцово-кислотным аккумулятором Exide все же стояли пять сухих батареек, - для резервного питания системы зажигания.
    В начале 20-го века Эдисон и Юнгнер предложили свои аккумуляторы с другим электролитом щелочью. Состав аккумуляторной батареи был такой: положительные пластины с активной массой – окиси никеля Ni(OH)3, отрицательные окись железа Fe2O3 щелочной электролит – 21% раствор едкого калия КОН с добавлением 2% едкого лития LiOH.
    В 1903 году начинается производство этих портативных аккумуляторов, которые получили широкое распространение на транспорт, электростанциях и небольших суднах.
    Щелочной аккумулятор не боялся коротких замыканий, больших разрядных и зарядных токов, сильных перезарядок и глубоких разрядов. Он обладал большой механической прочностью, мог долго оставаться в разряженном состояние, не подвергаясь сульфатации, имел сравнительно небольшой вес и был долговечнее по сравнению со свинцово-кислотными АКБ.
    К недостаткам щелочного аккумулятора можно отнести весьма малое рабочее напряжение, что сводило на нет его преимущество перед свинцовым аккумулятором по массе. Из-за большого внутреннего сопротивления было невозможно использование для питания стартера. Потому использовать в автомобиле решили свинцово-кислотные АКБ. Сначала корпуса аккумуляторных батарей делались из дерева потом из эбонита. Эбонитовые корпуса аккумуляторных батарей, с торчащими наружу или залитыми мастикой перемычками между элементами, постепенно уступили место более легким и прочным полипропиленовым. Но это произошло не скоро.
    На автомобилях до 1910г. аккумуляторная батарея (АКБ) применялась только для системы зажигания. Это объяснялось тем, что скорость движения автомобиля была невелика, и не требовалось особенно хорошего освещения дороги; кроме того, угольные лампы накаливания, будучи чрезвычайно не экономны, требовали чрезмерного увеличения размера и веса самой батареи.
    Началом широкого применения электроэнергии для освещения следует считать 1912г. Это было вызвано не только повышением скорости автомобилей, но и появлением лампы накаливания с металлической нитью, а также разработкой достаточно совершенного автомобильного генератора , который мог сохранять свое напряжение неизменным при разных скоростях движения автомобиля, и не только питать при этом все потребители электрической энергии, но и заряжать АКБ.

    Статистика тех лет была такова:
    - в 1913г. Количество легковых автомобилей оборудованных электрическим освещением составляло 37%
    - в1914г. – 87%
    - в 1915г. – 97,5%
    - в 1917г. – 98,8%
    - с 1918г. Практически все легковые автомобили в Америке имели полный комплект электрооборудования.
    По данным той же статистике, Европа значительно отставала от Америки.
    Так, в 1913г. ни одна европейская фирма не выпускала автомобили с электрическим освещением. В 1922г. в Германии количество грузовых автомобилей оснащенных электрическим освещением составляло – 42%, и только с 1926г. все автомобили стали оснащаться электрическими фонарями .
    Аккумуляторные батареи тех лет обслуживали на автомобили зажигание, освящение, звуковой сигнал при стоянке и при малых скоростях движения. Потребление электроэнергии на автомобиле расширилось за счет применения электростартеров питаемых от АКБ, для пуска автомобильного двигателя.
    Аккумуляторные батареи практически были такими же, как и сейчас. Батарея собиралась из отдельных аккумуляторов (3 или 6 аккумуляторов), помещенных в общий корпус. Каждый аккумулятор состоял из комплекта положительных и отрицательных пластин. Одноимённые пластины спаивались в общий комплект при полоши свинцовых мостиков. Комплекты пластин помешались в сосуд из кислото упорного материала – ебонита дно сосуда имело призматические рёбра, в промежутках между которыми собиралась выпадающая из пластин активная масса, предохраняя тем самым аккумулятор от короткого замыкания. Между пластинами устанавливались сепараторы из перфорированного волнообразного микропористого эбонита (мипора), микропористой пластмассы (мипласта), целлулоида стекловойлока или из деревянной фанеры, специальным образом обработанной (в нашей стране промышленное производство деревянных сепараторов официально прекратили только с января 1963года). Отдельные аккумуляторы собирались в батареею в общем деревянном корпусе. Промежутки между аккумуляторами и корпусом заливали специальной массой. Каждый аккумулятор снабжался эбонитовой крышкой с отверстием, закрываемым пробкой. В пробке было отверстие для выхода газов, которые образовывались во время зарядки батареи при движении автомобиля.
    Почти ежедневная проверка уровня электролита и постоянное доливание дистилированнй воды не вызывало восторга автомобилистов. А игнорирование таких операций приводили к снижению уровня электролита, сульфатации пластин и, в конечном итоге, преждевременному выходу из строя дорогостоящих батарей.
    Поэтому постоянно идут поиски новых решений, внедряются новые технологии, улучшающие существующие характеристики аккумуляторных батарей , направленные на уменьшение трудоемкости обслуживания АКБ . Об этом говорит только тот факт, что уже к 1937 году только по кислотному аккумулятору в мире было зарегистрировано около 20.000 патентов.



    Похожие статьи

    © 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.